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Abstract

Relation extraction, the process of converting natural lan-
guage text into structured knowledge, is increasingly impor-
tant. Most successful techniques use supervised machine
learning to generate extractors from sentences that have been
manually labeled with the relations’ arguments. Unfortu-
nately, these methods require numerous training examples,
which are expensive and time-consuming to produce.
This paper presents ontological smoothing, a semi-supervised
technique that learns extractors for a set of minimally-labeled
relations. Ontological smoothing has three phases. First, it
generates a mapping between the target relations and a back-
ground knowledge-base. Second, it uses distant supervision
to heuristically generate new training examples for the target
relations. Finally, it learns an extractor from a combination of
the original and newly-generated examples. Experiments on
65 relations across three target domains show that ontologi-
cal smoothing can dramatically improve precision and recall,
even rivaling fully supervised performance in many cases.

Introduction
Vast quantities of information are encoded on the Web in
natural language. In order to render this information into
structured form for easy analysis, researchers have devel-
oped methods for relation extraction (RE). The most suc-
cessful RE techniques use supervised machine learning to
generate extractors from a training corpus comprised of sen-
tences which have been manually labeled with the argu-
ments of the target relations. Unfortunately, these super-
vised methods require hundreds or thousands of training ex-
amples per relation, and thus have proven too expensive for
use in constructing Web-scale knowledge bases.

To address this problem, researchers introduced the
idea of distant supervision, a technique for automat-
ically creating training data by heuristically matching
the contents of a database relation to text (Craven and
Kumlien). For example, if one has a table of ath-
letes and their coaches that included the relation instance
(Jelani Jenkis, Urban Meyer), then a system can auto-
matically create a silver1 training example for isCoachedBy
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1‘Silver’ because these examples likely contain noise and aren’t
as valuable as ‘gold standard’ examples.

Extractor 

Given target relations 

and a few 

ground 

tuples 

1. Map target to background knowledge-base 

2. Generate silver 

training data with 

distant supervision 

3. Train relational extractor 

Figure 1: System overview

from the following sentence: “ ‘Our captain, Jelani Jenkins,
saved the day’ said head coach, Urban Meyer.”

However, distant supervision only works when one has a
large set of ground relation-instances (tuples) for the relation
of interest. What can be done if a user wishes to quickly
create an extractor, yet only has time to specify a handful of
examples?

This paper presents VELVET, a novel technique called on-
tological smoothing, that addresses this problem, improving
both precision and recall. VELVET learns extractors from a
set of minimal labeled relations by exploiting a large back-
ground knowledge-base and unlabeled textual corpus. As
shown in Figure 1, VELVET works in three phases: the first
step uses the few examples to generate a mapping from
the target relation to a database view over a background
knowledge-base, such as Freebase. The second step queries
the background knowledge-base to retrieve many more in-
stances that are deemed similar to those of the the target
relation; these are heuristically matched to the textual cor-
pus to create myriad silver training examples. Finally, in the
third step, VELVET learns an extractor.

It is challenging to find the best mapping from a tar-
get relation to a large background knowledge-base. Sim-
ply choosing the most similar background relation is insuf-
ficient. Instead, one should consider the large space of map-
pings formed by collections of database operations like join,
union, project and select. For example, even though Free-
base is extremely comprehensive, with considerable infor-
mation about athletics, the relations have been broken into
separate tables for individual sports, and the schemata have
been normalized in a manner that eliminates a simple ana-
logue to isCoachedBy (Figure 2). For this reason, and be-
cause of Freebase’s massive size, it is challenging for an av-
erage user to construct good mappings manually. Often a
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Figure 2: In order to map target relations to the background
knowledge-base, one must consider a large space of possi-
ble database views. For example, the target isCoachedBy
maps to the following expression over Freebase relations:
πPName,CNamePlayers 1 PlaysForTeam 1 Coach. (In fact,
the best mapping is a union of this expression with similar
ones for other sports.)

user wishes to extract several interrelated relations. VELVET
uses probabilistic joint inference over a set of Markov logic
constraints to find the best global mapping.

In summary, VELVET makes the following contributions:
1. We introduce ontological smoothing, a novel approach for

learning relational extractors given minimal supervision.
2. Our approach is based on a new ontology-mapping algo-

rithm, which uses probabilistic joint inference on schema-
and instance-level features to explore the space of com-
plex mappings defined using database join, union, project
and select operators.

3. We present experiments on 65 target relations across three
ontologies, using Freebase as background knowledge,
that demonstrate that ontological smoothing provides
order-of-magnitude improvements over unsmoothed ap-
proaches and rivals fully supervised performance in many
cases.

Constructing Ontological Mappings
The key intuition underlying ontological smoothing is that
by finding a mapping from a user-specified target relation
to a background knowledge-base, a system can automati-
cally generate extra training data and improve the learned
extractors. The key challenge is automatic construction of
a good mapping from the target ontology to the background
knowledge-base.

We assume that the target ontology is defined in terms of
unary types T and binary relations R. We express the selec-
tional preference (i.e. type constraint) of a binary relation by
R(T1, T2). For example, isCoachedBy(athlete, coach) is
a relation in the NELL ontology (Carlson et al. 2010a). We
assume that each target relation comes with a set of labeled
relation instances (tuples), denoted R(E1, E2). We also as-
sume the presence of a large knowledge-base, K, which is
comprised of many types and relations and is populated with
many instances (entities and ground relation instances); we
denote these t, r, e, and r(e1, e2) respectively.

A mapping between a target relation, R(T1, T2), and K,
denoted φ(R,K), is a SQL expression2 over types and re-

2We use a subset of SQL equivalent to relational algebra and
sometimes use that notation for brevity; the symbols 1, ∪, π and σ

lations in K’s schema; this expression defines a virtual re-
lation, called a database view. Given a target ontology,
some ground instances of its relations, and a background
knowledge-base, the ontology mapping problem is the task
of producing a mapping for each target, R, such that the in-
stances of φ(R,K) are semantically similar to those of R.

Ontology mapping is difficult because the space of possi-
ble views is huge. For example, Freebase contains more than
10,000 binary relations. Even if one restricts expressions to
two joins with no unions or selections, there are more than
1012 possibilities. But selections are very important, as the
following example illustrates. Suppose the target relation is
stadiumInCity and consider following views:
SELECT e1, e2 FROM containedBy (1)
SELECT e1, e2 FROM containedBy, sportsFacility, city

WHERE containedBy.e1 = sportsFacility.e

AND containedBy.e2 = city.e (2)
The second view is a subset of the first and denotes a rela-
tion with very different semantics. In order for ontological
smoothing to improve extractor performance, it’s important
to map as many ground instances as possible, but not too
many! If VELVET mapped facts about cities in states and
rivers in countries (as well as stadium locations), extractor
precision would plummet.

To create good mappings, VELVET considers constraints
between binary relations, unary types and entities — finding
analogues for all three of these elements at the same time.
We describe this process below, but one intuitive example is
“If entity E in the target ontology corresponds to e inK, then
the type of E should correspond to the type of e.” These con-
straints are described in Markov logic which combines the
expressiveness of first order logic with a clear probabilistic
semantics (Richardson and Domingos 2006).

At the highest level, VELVET uses a two-stage approach
to find the best mappings. First, we restrict the set of views
under consideration; this process, candidate generation, is
described in the next subsection. Next, VELVET uses prob-
abilistic joint inference to select the most likely global map-
ping from the candidates for each target relation, type and
entity; our probability model and inference algorithm are de-
scribed in the following subsections.

Generating Mapping Candidates
The first step in mapping construction is defining a set of
candidate mappings for each of the target entities, types and
binary relations; later these are ranked. Our model generates
a set of Markov logic rules over special predicates and their
negations: Cnddt(e, E) means that the mapping between E
and e is in consideration, and the probability of Mp(e, E) sig-
nifies the quality of the mapping. We use a hard rule to
ensure that two entities will only be mapped if they have
similar names (Syn stands for synonym):

Syn(e, E)⇒ Cnddt(e, E) (3)
The next rule encodes the intuition that when two entities
possibly match then their types might also match.

Cnddt(e, E) ∧ Tp(e, t) ∧ Tp(E, T)⇒ Cnddt(t, T) (4)

stand for database join, union, project and select operators.



Here, Tp(e, t) indicates t is the type of e in K. The same
notation applies for target terms: Tp(E, T).

We now turn to binary relations, such as R(T1, T2).
VELVET only considers mapping R into views of the fol-
lowing form: ∪χ(t1, t2) where ∪ denotes union; χ is a join
of up to 4 binary relations in K; ti = φ(Ti) specify selec-
tion operations that only allow instances whose K entity ar-
guments have types corresponding to the selectional prefer-
ences of the target, Ti. Our next hard rule forces a candidate
join path over K to contain at least one instance that is also
present in the target relation.

Inst(R, (E1, E2)) ∧ Inst(χ, (e1, e2))
∧Syn(e1, E1) ∧ Syn(e2, E2)⇒ Cnddt(χ, R) (5)

The term, Inst(R, (E1, E2)), means that the tuple, R(E1, E2),
is a ground instance of target relation R. Inst(χ, (e1, e2))
means that e1 and e2 are elements in a row of χ, which was
created by joining several relations from K.

Our last hard rules specify that only candidates can be
considered as mappings (we show the case for binary rela-
tions, but similar rules govern type and entity mappings):

Mp(χ, R)⇒ Cnddt(χ, R) (6)

Specifying the Likelihood of Mappings
We now describe our model for ascribing the probability of
mappings. Here we use the full power of Markov logic. Un-
fortunately, our treatment must be brief. The probability of a
truth assignment to the Cnddt and Mp predicates is given by
P (x) = (1/Z)exp(

∑
i wini(x)), where Z is a normaliza-

tion constant, wi is the weight of the ith rule, and ni is the
number of satisfied groundings of the rule. See (Richardson
and Domingos 2006) for details.

Consistency between Relations, Types and Entities: If
many ground instances are shared between a target relation
and its image under a mapping, then that suggests that the
mapping is good. One might think that one could encode
this as:

Inst(R, (E1, E2)) ∧ Inst(χ, (e1, e2))
∧Mp(e1, E1) ∧ Mp(e2, E2)⇒ Mp(χ, R) (7)

Unfortunately, this encoding causes problems. While this
rule may look similar to Equation 5, this one affects the
probability of both entity and relation mappings, since the
probability of Mp(e, E) is also being inferred while syn-
onyms (used in Equation 5) are taken as ground-truth inputs.
The problem with Equation 7 is that it can cause VELVET
to lower the probability of an (otherwise good) entity-entity
mapping, whenever it dislikes a mapping between binary re-
lations that involve those entities. Instead, we wish the infer-
ence to go one way: if many ground instances map, then the
relations should be likely to map, but not vise versa. This is
encoded as:

Mp(e1, E1) ∧ Mp(e2, E2) ∧ Inst(R, (E1, E2))

∧
(
∨Kk=1Inst(χk, (e1, e2))

)
∧
(
∨Kk=1Mp(χk, R)

)
(8)

Note that we’ve replaced ⇒ with ∧ to avoid negative “in-
formation flow.” We use disjunction ∨ among Mp(χk, R) to

handle overlapped relations. Note Equation 8 is not sym-
metric between χ and R; this is because the target ontology
is usually small and its relations do not overlap. We specify
a similar rule for types:

Mp(e, E) ∧ Tp(E, T) ∧
(
∨Kk=1Tp(e, tk)

)
∧
(
∨Kk=1Mp(tk, T)

)
Negative instance constraints: When specifying a target

ontology, it is sometimes possible to declare a closed-world
assumption, specify exclusion between types or otherwise
present negative examples. Since these can greatly improve
the quality of a mapping, we include the following hard rule:

Inst(χ, (e1, e2)) ∧ NegInst(R, (E1, E2))
∧Mp(e1, E1) ∧ Mp(e2, E2)⇒ ¬Mp(χ, R) (9)

Unlike the Equation 8, we use ⇒ because when Mp(χ, R),
Inst(χ, (e1, e2)) is true but (E1, E2) is a negative instance
of R, it is very unlikely that the entity mappings are correct.

Length of Join: While joining binary relations over the
background ontology greatly extends the representational
ability of the views, it may also add noise from arbi-
trary cross products. To combat this, we add a soft rule
short(χ) ⇒ Mp(χ, R), enforcing a preference for views
with a small number of joins.

Unique Entities: We assume that the background knowl-
edge base is of high quality, with little duplication among
entities. This justifies the following hard rule: Mp(e, E) ⇒
¬Mp(e′, E).

Regularization: According to Ockham’s Razor, VELVET
should avoid predictions with weak evidence. We add
soft rules for type and relation mappings: ¬Mp(t, T) and
¬Mp(χ, R). With respect to entity mappings, the unique en-
tities rules achieve regularization.

Maximum a Posteriori Inference
Finding a solution to arg maxx P (x) is challenging. One is-
sue is the scale of our problem: we would like to assign truth
values to thousands of grounded predicates, but our prob-
lem, which is equivalent to the weighted Maximum Satisfi-
ability problem, is NP-hard. Furthermore, the dependencies
encoded in our rules break the joint distribution into islands
of high-probability states with no paths between them — a
challenge for local search algorithms.

One way of solving arg maxx P (x) is to cast it into an
integer linear program (Motwani and Raghavan 1995). Al-
though the integer linear program is intractable in our case,
we can compute an approximation in polynomial time by
relaxing the problem to a linear program and using random-
ized rounding, as proposed by (Yannakakis 1992). For solv-
ing the linear program we use MOSEK with the interior-
point optimization method.

Relation Extraction
After mapping the target relations into the background
knowledge-base K, VELVET applies distant supervi-
sion (Craven and Kumlien 1999) to heuristically match both
seed relation instances and relation instances of the mapped
relations, to corresponding text.



For example, if r(e1, e2) = isCoachedBy(Jenkins,
Meyer) is a relation instance and s is a sentence contain-
ing synonyms for both e1 = Jenkins and e2 = Meyer, then
s may be a natural language expression of the fact that
(e1, e2) ∈ r holds and could be a useful training example.

Unfortunately, this heuristic can often lead to noisy data
and poor extraction performance. To fix this problem, Riedel
et al. (Riedel, Yao, and McCallum 2010) cast distant super-
vision as a form of multi-instance learning, assuming only
that at least one of the sentences containing e1 and e2 are
expressing (e1, e2) ∈ r.

In our work, we use the publicly-available MultiR sys-
tem (Hoffmann et al. 2011) which generalizes Riedel et al.’s
method with a faster model that also allows relations to over-
lap. MultiR uses a probabilistic, graphical model that com-
bines a sentence-level extraction component with a simple,
corpus-level component for aggregating the individual facts.

Training examples and their features are computed fol-
lowing (Mintz et al. 2009). On each sentence, we first run
a statistical tagger to identify named entities and their types.
Each pair of entity annotations is then considered as an ex-
traction candidate, with features being conjunctions of the
inferred entity types and paths of syntactic dependencies be-
tween the entity annotations.

For tagging named entities, we use the system by (Ling
and Weld 2012). Since it outputs fine-grained entity types
based on the Freebase type system, we can enforce consis-
tency by considering only examples where the types of the
tagger agree with those inferred in the mapping phase. We
found that this step improves efficiency and leads to more
accurate extractions. For computing syntactic dependencies
we use Stanford Dependency Parser (Marneffe, Maccartney,
and Manning 2006).

Experiments
In our experiments we examine (1) the impact of smoothing
on the quality of relational extractors, (2) the quality of rela-
tion extraction using VELVET compared to supervised sys-
tems, and (3) the quality of ontological mappings inferred
by VELVET.

Experimental Setup
In this paper, VELVET uses Freebase (Bollacker et al. 2008)
as the background knowledge-base K, which contains mil-
lions of entities and tens of thousands of relations across
many domains. For the unlabeled corpus, we use the New
York Times (Sandhaus 2008) which contains over 1.8 mil-
lion news articles published between Jan. 1987 and Jun.
2007. For practicality, we make two simplifications. First,
we set all weights for VELVET’s soft rules to 1. In future
work, we may further improve results using weight learning.
Second, we limit the size of join computations. In particular,
we remove candidate joins if there exists a setting of the join
attributes that yields more than 10, 000 join tuples.

Relation Extraction with Smoothing
We compare VELVET to the following baseline conditions:

w/oS “without smoothed instances”: Learns extractors
from ground relation instances only; makes no use of
background knowledge-base K.

w/oC “without complex mappings”: Maps each target re-
lation to a single atomic relation in the background
knowledge-base, that covers most ground relation in-
stances. Type information is ignored. One-to-one map-
pings are also known as alignments.

w/oJ “without joint inference”. Computes a complex map-
ping of target relations to the background knowledge-base
involving 1, π, and σ operators.3 First, each target re-
lation and each target type are assigned the background
relations and types which cover most ground instances.
Then, type constraints are enforced by taking appropriate
joins.

We conduct experiments on relations of two target ontolo-
gies: NELL and IC. The NELL ontology (Carlson et al.
2010a)4 contains 118 binary relations, but only 52 relations
have a small number of positive ground instances. Many of
these also have negative instances. The arguments for binary
relations are typed. In total, the ground instances cover 40
different entity types and 829 unique entities. The IC on-
tology is derived from the IC dataset of the Linguistic Data
Consortium5. The dataset contains annotations of news ar-
ticles relevant to the intelligence domain. The IC ontology
contains 9 binary relations, and we collected 388 positive
ground instances from the annotated articles of the dataset.

We note that it is difficult to create a test set with enough
gold annotations, since mentions of these 61 relations tend
to be sparse. Thus we adopt the (semi-)automatic evaluation
metric used in (Riedel, Yao, and McCallum 2010), which we
call M1. For each target relation, we estimate precision and
recall by comparing two answer sets, ∆ and ∆V . ∆V rep-
resents the set of predicted relation instances; ∆ represents
the set of relation instances in our background knowledge-
base. In our work, we compute ∆ by manually creating the
best gold mapping from a target relation into the background
knowledge-base using any combination of relational algebra
operators, and then retrieving all instances. When aggregat-
ing over multiple relations, M1 averages over instances.

Figure 3 shows precision and recall curves. The poor per-
formance of “w/oS” is due to the fact that there exist only
few ground instances for each target relation, and often even
fewer ground instances can be matched to sentences.

Smoothing, however, dramatically improves perfor-
mance. We further observe that complex mappings are
important: w/oC which only finds an alignment performs
worse than w/oJ or VELVET. Upon inspection, we noticed
that w/oC often maps to over-general relations. For example,
background relation containedBy is mapped to target rela-
tion stadiumInCity. We therefore need type constraints,
but not only type constraints: The fact that VELVET outper-
forms w/oJ shows that VELVET’s abilities to do joint infer-
ence and support ∪ operators are also crucial.

3There is no obvious way to handle ∪ operators, without joint-
inference or learning thresholds.

4http : //rtw.ml.cmu.edu/aaai10online/relations.xls
5LDC2010E07, theMachineReadingP1ICTrainingDataV3.1



0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

1.0

w/oJ
VELVET

Recall

P
re

ci
si

on

w/oC
w/oS

(a) NELL

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

w/oJ
VELVET

Recall

P
re

ci
si

on

w/oC
w/oS

(b) IC

Figure 3: Relation extraction with minimal supervision.
VELVET outperforms baseline conditions on two target on-
tologies, Nell and IC.

Ontology w/oS w/oC w/oJ VELVET Manual
NELL 7.2 18.1 25.1 27.1 31.6
IC 11.3 37.9 39.4 40.9 41.4

Table 1: Approximate F1 scores averaged by relations.
VELVET outperforms baseline conditions on two target on-
tologies, NELL and IC. Condition “Manual” shows perfor-
mance of an extractor trained on smoothed instances of the
best manually constructed complex mapping from target re-
lations to background knowledge-base.

Although M1 allows (semi-)automatic evaluation on mil-
lions of sentences, it has two drawbacks: Since M1 aver-
ages over instances, relations with many instances contribute
more to the overall score than sparse relations. Furthermore,
the metric only provides a conservative estimate of perfor-
mance when the knowledge-base is incomplete. We there-
fore also evaluate VELVET using additional metrics.

Table 1 compares VELVET to our baseline conditions,
averaged over relations rather than instances. The rela-
tive comparisons are consistent with our observations so far.
Note, however, that averaging over relations tends to give
lower numbers than averaging over instances, because the
system can learn more accurately from relations with more
instances.

Table 2 shows a breakdown of results per relation. Pre-
cision, recall, and F1 are estimated using the conservative
metric M1, but we also report top-K accuracy for K = 10.
For each relation we took the top ten extractions for which
our extractor was most confident and manually checked cor-
rectness. We obtained results in the high 70%−100% range.

Comparing to Supervised Extraction
In this section, we want to show that VELVET can achieve
performance comparable to state-of-the-art supervised ap-
proaches but with much less supervision. For this exper-
iment, we choose a standard dataset for which there exist
numerous annotations.

We use the Conll04 relation extraction dataset6 (Roth and
Yih 2007). The sentences in this dataset were taken from
the TREC corpus and were fully annotated with entities,
types and relations. There are five relations and four entity
types. We use the same experimental settings as previous

6http : //cogcomp.cs.illinois.edu/Data/ER/conll04.corp

Relation Rec Pre F1 Acc@top-10
bookWriter 31.8 43.5 36.7 100%

headquarterIn 19.1 60.1 28.9 90%
isCoachedBy 28.9 10.3 15.3 70%
stadiumInCity 51.9 77.6 62.6 100%
attendSchool 69.4 44.4 54.2 80%

isLedBy 33.8 49.7 40.2 100%

Table 2: Relation-specific Precision, Recall, F1 (estimated
using M1), and Accuracy at top-10 (checked manually) for
4 NELL and 2 IC relations.

Relation VELVET CP10 RY07
Rec Pre F1 F1 F1

Kills 33.4 29.4 31.3 75.2 79.0
LiveIn 65.8 49.4 69.2 62.9 53.0

LocatedIn 64.0 65.4 64.7 58.3 51.3
OrgBasedIn 67.4 47.1 55.5 64.7 54.3
WorkFor 61.8 78.5 69.1 70.7 53.1

Table 3: VELVET achieves performance comparable to state-
of-the-art supervised approaches RY07 and CP10, when
there exists an appropriate mapping to its background on-
tology. While RY07 and CP10 need fully labeled sentences,
VELVET learns with minimal supervision of just 10 ground
instances per relation. Freebase does not offer an appropri-
ate mapping for the Kills relation.

work (Kate and Mooney 2010; Roth and Yih 2007) to enable
direct comparison. In this setting, there are 1437 sentences
and about 18, 000 instances. However, unlike the supervised
approaches, we only provide VELVET 10 ground instances
per relation and no sentence-level annotations.

VELVET’s ontology mapping component finds correct
mappings for four relations, LocatedIn, OrgBasedIn,
WorkFor, LiveIn, and correctly determines that Freebase
does not offer an appropriate mapping for the Kills rela-
tion.

Table 3 compares VELVET’s relation extraction perfor-
mance to that of CP10 (Kate and Mooney 2010) and
RY07 (Roth and Yih 2007). When VELVET finds correct
mappings, it achieves comparable performance to the state-
of-the-art supervised approach CP10 and RY07. However,
VELVET achieves this result with only a small set of labeled
ground instances, while CP10 and RY07 used more than one
thousand labeled sentences. Of course, VELVET only works
if the target relation has an analogue in the background KB.

Ontological Mapping Quality
Finally, we analyze the performance of our ontology map-
ping component in more detail. Note that solving the map-
ping problem requires finding a joint assignment to a consid-
erable number of variables: for NELL, we computed truth
values for 3055 entity mapping candidates, 252 type map-
ping candidates, and 729 relation mapping candidates. For
the IC domain, these are 1552, 130, and 256, respectively.

We investigate accuracy for entity, type and relation map-
pings by manually validating the individual decisions. Note
that our algorithm does not always return a mapping element
in the background knowledge-base K for an element in the
target ontology. This often makes sense, since Freebase, al-



Target Relation Mapped View
bookWriter π1.name,2.name/book/book

1 1 /book/written work/author 1 /en/author2 ∪ π3.name,4.name/film/film3 1 /film/film/story by 1 /en/author4

headquarterIn π1.name,2.name/business/business operation1 1 /organization/organization/headquarters 1 /location/mailing address/citytown 1 /location/citytown2

∪π3.name,4.name/organization/organization3 1 /organization/organization/headquarters 1 /location/mailing address/citytown 1 /location/citytown4

isCoachedBy π1.name,2.name /american football/football player1 1 /american football/football player/passing 1 /american football/player passing statistics/team

1 /american football/football team/current head coach 1 /en/head coach2∪π3.name,4.name /en/basketball player3 1 /basketball/basketball player/team

1 /basketball/basketball roster position/team 1 /basketball/basketball team/head coach 1 /basketball/basketball coach4

stadiumInCity π1.name,2.name/sports/sports facility1 1 /location/location/containedby 1 /location/citytown2

attendSchool π1.name,2.name /people/person
1 1 /people/person/education 1 /education/education/institution 1 /education/university2

isLedBy π1.name,2.name /government/political party1 1 /government/political party/politicians in this party 1 /government/political party tenure/politician

1 /government/politician2 ∪π3.name,4.name /location/country3 1 /government/governmental jurisdiction/governing officials

1 /government/government position held/office holder 1 /government/politician4

Table 4: VELVET ontological mapping result on 4 NELL and 2 IC relations, with join, union, project and select operators.

though large, does not cover all entities, types or relations.
It turned out that VELVET achieves 87.9% accuracy on rela-
tion mapping, 90.9% on type mapping and 92.9% on entity
mapping. As a baseline, we use a Freebase internal search
API to map entities in the target ontology to entities in Free-
base. This baseline gets 88.5% accuracy, which means joint
inference in VELVET results in a reduction of 30% of entity
mapping errors.

Table 4 shows the results of mapping six relations to Free-
base. VELVET is able to accurately recover relations com-
posed by multiple select, project, join, and union operations.
The results show that our ontology mapping algorithm re-
turns meaningful mappings, thus ensuring the robustness of
the overall system.

Related Work
Learning extractors with minimal supervision Learning
extractors from scarce training data has been an active area
of research. Weakly supervised algorithms based on boot-
strapping (Brin 1998; Agichtein and Gravano 2000) start
with a small number of annotated seed data, and then iter-
atively generate extraction patterns (by matching seed data
to text) and more seed data (by matching extraction patterns
to text). While there are many successful examples of boot-
strapping, avoiding semantic drift is challenging, especially
in the case of unary relations. Large-scale systems there-
fore often use additional constraints (Carlson et al. 2010b),
require extraction patterns as inputs, rely on manual valida-
tions between iterations, or focus on known typed entities
as candidate arguments (Nakashole, Theobald, and Weikum
2011).

Other approaches target different kinds of background
knowledge. (Chang, Ratinov, and Roth 2007; Smith and
Eisner 2005; Bellare and McCallum 2009) allow learning
with soft constraints, for example in the form of labeled
features. (Stevenson and Greenwood 2005) use WordNet
to learn more general extraction patterns, and (Cohen and
Sarawagi 2004) use domain-specific dictionaries. (McCal-
lum et al. 1998; Wu, Hoffmann, and Weld 2008) leverage
the hierarchical structure of an ontology to smooth parame-
ter estimates of a learned model.

VELVET differs from that work in that it uses a different
kind of resource for background knowledge, Freebase, and
more importantly in that it does not require any additional
manual input besides the seed ontology. VELVET automati-
cally recovers the mapping between seed ontology and back-
ground knowledge.

Mapping between ontologies Euzenat & Shvaiko (Eu-
zenat and Shvaiko 2007) and Rahm & Bernstein (Rahm and

Bernstein 2001) carve the set of approaches for ontology
matching into several dimensions. The input of the matching
algorithm can be schema-based, instance-based or mixed.
The output can be an alignment (i.e., a one-to-one function
between objects in the two ontologies) or a complex map-
ping (e.g., defined as a view).

While the alignment problem has been studied exten-
sively, far less work has looked has looked at finding com-
plex mappings between ontologies. Artemis (Castano and
Antonellis 1999) creates global views using hierarchical
clustering of database schema elements. MapOnto (An,
Borgida, and Mylopoulos 2006) produces mapping rules
between two schemas expressed as Horn clauses. Miller
et al.’s tool Clio (Miller, Haas, and Hernández 2000)(Miller
et al. 2001) generates complex SQL queries as mappings,
and ranks these by heuristics.

In our experiments, ontological smoothing only worked
well when we allowed complex mappings involving selec-
tions, projections, joins, and unions. While MapOnto and
Clio handle complex mappings, they are semi-automatic
tools that depend on user guidance. In contrast, we de-
signed VELVET to be fully autonomous. Unlike the other
two, VELVET uses a propabilistic representation and per-
forms joint inference to find the best mapping.

Conclusion
Relation extraction has the potential to enable improved
search and question-answering applications by transforming
information encoded in natural language on the Web into
structured form. Unfortunately, most successful techniques
for relation extraction are based on supervised learning and
require hundreds or thousands of training examples; these
are expensive and time-consuming to produce. This paper
presents ontological smoothing, a novel method for learning
relational extractors, that requires only minimal supervision.
Our approach is based on a new ontology-mapping algo-
rithm, which uses probabilistic joint inference over schema-
and instance-based features to search the space of views de-
fined using SQL selection, projection, join and union op-
erators. Experiments demonstrate the method’s promise,
improving both precision and recall. Our VELVET sys-
tem learned significantly better extractors for 65 relations
in three target ontologies and rivals fully supervised perfor-
mance in many cases.
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