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ABSTRACT
Understanding intents from search queries can improve a
user’s search experience and boost a site’s advertising prof-
its. Query tagging via statistical sequential labeling models
has been shown to perform well, but annotating the train-
ing set for supervised learning requires substantial human
effort. Domain-specific knowledge, such as semantic class
lexicons, reduces the amount of needed manual annotations,
but much human effort is still required to maintain these as
search topics evolve over time.

This paper investigates semi-supervised learning algorithms
that leverage structured data (HTML lists) from the Web
to automatically generate semantic-class lexicons, which are
used to improve query tagging performance – even with far
less training data. We focus our study on understanding
the correct objectives for the semi-supervised lexicon learn-
ing algorithms that are crucial for the success of query tag-
ging. Prior work on lexicon acquisition has largely focused
on the precision of the lexicons, but we show that precision
is not important if the lexicons are used for query tagging.
A more adequate criterion should emphasize a trade-off be-
tween maximizing the recall of semantic class instances in
the data, and minimizing the confusability. This ensures
that the similar levels of precision and recall are observed
on both training and test set, hence prevents over-fitting
the lexicon features. Experimental results on retail product
queries show that enhancing a query tagger with lexicons
learned with this objective reduces word level tagging errors
by up to 25% compared to the baseline tagger that does
not use any lexicon features. In contrast, lexicons obtained
through a precision-centric learning algorithm even degrade
the performance of a tagger compared to the baseline. Fur-
thermore, the proposed method outperforms one in which
semantic class lexicons have been extracted from a database.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
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search and retrieval—Search process; I.2.6 [Artificial Intel-
ligence]: Learning—Knowledge Acquisition; I.5.1 [Pattern
Recognition]: Models—Statistical

General Terms
Algorithms, Theory, Experimentation, Performance

Keywords
Lexicon acquisition/set expansion, query understanding/semantic
tagging, HTML lists, conditional random fields, semi-supervised
learning, information extraction, model over-fitting

1. INTRODUCTION
One can greatly improve a user’s search experience and

boost a site’s advertising profits by better understanding
the user’s intent. Query tagging − assigning a pre-defined
semantic label to each query term − is an attempt towards
this goal. For example, a product query may be tagged as
follows:

canon powershot sd850 digital camera silver
| | | | | |

Brand Model Model Type Type Attribute

By understanding what users are looking for, one can
provide the exact information they need. Indeed, much of
this information may be found in the contents of relational
databases, which are now indexed by most search engines.
By automatically tagging queries with field information, one
can use the index to directly retrieve the precise information
a user needs. Furthermore, an improved understanding of
query intent enables better decisions in the selection of con-
textual ads. For example, relevant local ads may be selected
when query tagging identifies a city in the following query:

hotels in white swan washington
| | | | |

Category Other City City State
Query tagging [10] is a specialized form of information

extraction (IE) or named entity recognition (NER), which
is often performed by training statistical sequential label-
ing models, such as Conditional Random Fields (CRFs) [8].
CRFs generally outperform rule based systems by large mar-
gins, and usually rules can be incorporated as features into
CRFs, so in practice CRFs reach at least similar perfor-
mance as a rule-based system. Additionally, CRFs are bet-
ter at ambiguity resolution by modeling context dependen-
cies with a principled data-driven approach. Ambiguity is



one of the most difficult problems in query tagging, as illus-
trated by the example above – “white swan” could denote
an animal, arts and crafts or a city; “washington” could re-
fer to a person, city, county or state. However, while su-
pervised learning generates statistical models which disam-
biguate effectively, substantial human effort is required to
create an annotated training set for learning. For product
query tagging, this problem is exacerbated by the fact that
queries change over time due to the emergence of new kinds
of products, new brands, new models, new merchants, or
new product features. Domain specific knowledge, such as
phrase lists for concepts like Brand or Model (henceforth
“semantic class lexicons”), has been shown to improve the
generalization capability of statistical models, reducing the
need for annotated data[21]. However, such knowledge is
often not available and usually requires substantial human
effort to compile and maintain, which may be too costly as
information changes over time.

In this work, we compare two semi-supervised learning al-
gorithms that leverage structured data (HTML lists) from
the Web to generate semantic-class lexicons. The algorithms
are based on the assumption that many HTML lists contain
instances of a single concept. For example, if “powershot
sd850” is labeled as Model in the training data and it is
observed to co-occur with “rebel xsi” in many HTML lists,
then “rebel xsi” is likely to be a Model as well. In our case,
instance phrases of semantic classes (Brand, Model, etc.)
are first extracted from annotated queries; the instances are
then used as seeds in a graph learning algorithm to obtain
additional instances of the same semantic classes. These
sets of instances, or lexicons, enable statistical models to
rely on less labeled training data – in fact we will show later
that with only a few hundred of labeled queries plus the
lexicons that are automatically obtained from the proposed
algorithm, a query tagger achieves better performance than
a model trained with tens of thousands of labeled examples
without any lexicons. Because the lists on the ever-changing
Web reflect the evolving nature of the contents of semantic
classes, and the context patterns are relatively fixed over
time – e.g., it is always more likely that a model follows a
brand (“canon rebel”) than a brand follows a model (“rebel
canon”), incorporating lexicons learned from the Web into a
statistical model also makes this technique adaptive to the
query content shift as it occurs over time.

The algorithms discussed in this paper are not specific to
queries; they can also be applied to other information ex-
traction (IE) tasks (in fact, we have applied them to extract
from natural language text). One requirement, however, is
that the entities of interest are well represented on the Web.
For product query understanding, the domain the present
work focuses on, this is generally the case. The tag set con-
tains nine labels illustrated in Table 1. We attempt to ac-
quire lexicons for the first five classes that occur frequently
in queries and Web lists.

We adapt two graph-learning algorithms to the task of
lexicon learning and observe opposite impacts on query tag-
ging accuracy. To understand the difference, we carry out
a series of experiments, and find that traditional precision-
centric lexicon learning is inadequate for query tagging – it
causes a mismatch of lexicon coverage between the training
and test data, and consequently results in a severe over-
fitting of the lexicon features in the statistical sequential
labeling model. We show that a more adequate criterion

Table 1: Semantic classes (CRF labels) in product
query tagging task

Semantic classes Example use in queries

Brand canon powershot sd850
Model canon powershot sd850
Merchant digital cameras at best buy
Type digital cameras at best buy
Attribute 10 megapixel digit cameras

SortOrder cheapest digital cameras
BuyingIntent digital camera sales
ResearchIntent digital camera reviews
Other digital cameras at best buy

should emphasize the coverage of the acquired lexicons while
maintaining a low level of confusability. Here we prefer to
have more entries acquired by the algorithm to cover the in-
stances in the query tagging data (i.e., broad coverage). In
the mean time, low level of confusability requires that an un-
ambiguous phrase e has a high posterior probability P (c | e)
for the corresponding semantic class c, while the probability
is lower if e is ambiguously labeled with different semantic
tags in the query tagging data. If e does not occur often
in the domain of interest, the value of the probability has
little impact on the final query tagging accuracy – hence
precision should not be the primary criterion of lexicon ac-
quisition for query tagging. By increasing coverage while
maintaining low level of confusability, similar precision and
recall levels can be observed on both training and test data,
which effectively avoids model over-fitting.

Although we study these effects in the context of query
tagging, we believe that our discoveries generalize beyond
our task and provide a guideline for future research on semi-
supervised knowledge acquisition for information extraction
and named entity recognition.

1.1 Related Work
Semantic class and relation acquisition is a well-studied

topic. Much research leverages linguistic patterns to extract
semantic classes and relations from free text [6, 2, 11, 14, 7].
In [4], an algorithm is introduced to learn semantic classes
and named entity extraction patterns simultaneously. Re-
cently there has been increasing interest in leveraging struc-
tured data from the Web to learn semantic classes and re-
lations. In [20], a Web page wrapper induction algorithm
is presented that learns language-independent patterns for
semantic class lexicon expansion. In [5], both linguistic pat-
terns and wrappers for lists are used to extract semantic
class members. In [3], a Web-scale relational database is
built by filtering HTML tables with statistical classifiers.
The work described in [19] is closely related to ours. Like
us, the authors use graph learning to acquire open-domain
semantic classes by leveraging structured Web data, in their
case, the HTML tables reported in [3]. Another closely re-
lated work is described in [18], where a context pattern in-
duction algorithm is used to obtain lexicons, which in turn
are used by a named entity recognition model.

In contrast to this existing work, which primarily focuses
on the precision of the acquired semantic classes1, we are

1Note that most of the related work learns semantic classes
for the sake of semantic class acquisition, hence precision is



ambivalent about the precision. In our case, the semantic
classes are only used as intermediate information to improve
the query tagging accuracy and are hidden from the end
users. Therefore, we consider over-generalization acceptable
as long as it does not degrade the performance of query
tagging. As shown later in the paper, this philosophical
difference leads to different graph learning algorithms – with
dramatically different results.

Finally, we note that there exist large bodies of work
on Conditional Random Fields and graph-based learning.
CRFs have been broadly applied to many natural language
related tasks, including part-of-speech tagging [8], named
entity recognition [12], information extraction [16], and pars-
ing [17]. Graph-based learning [23, 24] has been used for
various natural language processing tasks, as evidenced by
many publications in the TextGraphs Workshops [1].

2. CONDITIONAL RANDOM FIELDS
CRFs [8] are conditional models with the following log-

linear form defined with respect to a set of features fk(y,x).
The features are functions of the label sequence y and asso-
ciated observation x:

P (y | x; Λ) =
1

Z(x; Λ)
exp

{

∑

k

λkfk (y,x)

}

(1)

Here Λ = {λk} is a set of parameters. The value of λk

determines the impact of the feature fk(y,x) on the condi-
tional probability. Z(x; Λ) =

∑

y
exp

{
∑

k λkfk (y,x)
}

is a
partition function that normalizes the distribution. Given a
set of m labeled training examples (x1, y1) . . . (xm, ym), Λ
can be learned by using stochastic gradient decent, L-BFGS
or other numeric optimization algorithms to maximize the
following objective function:

m
∑

i=1

log P (yi | xi; Λ) −
1

2σ2
‖Λ‖2 (2)

The second term in Eq. (2) regularizes the parameters
to keep them from taking extreme values, thus preventing
model over-fitting. Note that the objective function is a
convex function, so a single global optimum exists.

The CRF in Eq. (1) is unconstrained in the sense that the
feature functions are defined on the entire label sequence y.
Because the number of all possible label sequences is com-
binatorial, the model training and inference of an uncon-
strained CRF is very inefficient. To improve efficiency, it is
common to restrict attention to linear-chain CRFs [8, 15],
imposing a Markov constraint on the model topology, and
restricting the feature functions to depend only on the labels
assigned to the current and immediately previous terms, in
the form f(yt−1, yt,x, t). These allow efficient dynamic pro-
gramming algorithms for inference and model training – yet
still support potentially interdependent features on observa-
tions via discriminative training of the conditional model.

3. SEMANTIC LEXICON LEARNING AND
ITS APPLICATION IN QUERY TAGGING

Our technique for semi-supervised lexicon acquisition and
query tagging proceeds in the following steps:

the most important metric.

Table 2: Examples of seed distributions
Seed Brand Model Merc. Type Attr. Neg.
camera 0.003 0.017 0 0.963 0 0.017
powershot 0 0.230 0 0.770 0 0
office depot 0.289 0 0.711 0 0 0

1. Extracting seed instances with an initial distribution
over all semantic classes of interest from labeled train-
ing data.

2. Constructing a sub-graph from a phrase-list bipartite
graph using the seed instance phrases.

3. Applying graph learning algorithms on the sub-graph
to obtain a posterior distribution over all semantic
classes of interest for each phrase node in the sub-
graph.

4. Constructing stratified lexicons according to the pos-
terior distributions for each semantic class.

5. Training the CRFs with features built on the stratified
lexicons.

Step 1, 2, and 4 will be described in this section. Step 3
will be devoted a separate section afterwards. Step 5 will be
explained in Section 5.1.

3.1 Extracting Seed Instances
The training set for CRF query tagging contains queries

manually tagged with labels like the examples in Section
1. Seed instances for each semantic class of interest are ex-
tracted from it. A sequence of terms with the same semantic
class labels is combined as an instance phrase. For the exam-
ple in Section 1, seed instance “canon” can be extracted for
Brand, “powershot sd850” for Model, and “digital camera”
for Type. Phrases can often ambiguously belong to multiple
semantic classes. This may be due to the fact that they are
intrinsically ambiguous (“apple” can be a Brand or a Mer-
chant as the Apple Store) or due to annotation mistakes –
the majority of occurrences of“powershot”was mislabeled as
Type instead of the correct label Model. Instead of assigning
a single semantic class to a phrase, each phrase is therefore
associated with a distribution over the set of classes – for the
product query tagging task, the distribution is over the five
classes at the top of Table 1, plus an additional “Negative”
class representing the union of the remaining four semantic
classes, for which we do not learn the separate lexicons to
use as features in the CRF. Table 2 shows some examples of
the extracted seeds with their distributions.

3.2 Constructing the Sub-Graph
A set of HTML lists (contents of <ol> or <ul> tags) are

crawled from the Web and heuristically cleaned to remove
the SPAM lists or lists used to format Web page layout. The
resulting set includes about 55 million lists, which contain
about 61 million unique phrases. From the lists a bipartite
graph can be built, as illustrated by Figure 1, where an edge
connects a phrase node with a list node if the phrase is an
item in the list. The edges have the uniform weight of 1.0.

Given a set of seeds with their class distributions, a sub-
graph is constructed. First, all the list nodes are marked
with the number of items that exactly match a seed phrase.
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Figure 1: Bipartite list graph. On the left are the
unique phrases, on the right are the HTML lists

The list nodes are pruned if their seed count is under a
threshold2. Then the phrase nodes are marked with the
number of the surviving lists they belong to. The same
threshold is used to prune out the phrase nodes that do not
appear in a sufficient number of lists.

3.3 Constructing Stratified Lexicons
The graph learning algorithms described in the next sec-

tion produce P (c | v), a distribution over semantic classes
c for a phrase node v in the graph. While the probabilities
can be directly used as continuous features in CRFs, they
are not very reliable due to the noisy nature of the lists. In-
stead, phrases are binned to multiple stratified lexicons for
a semantic class c according to their distributions – phrase
p (represented by vp in the graph) is included in the lexicon
ck for class c if 1−P (c | vp) ∈ [(k− 1)/10, k/10). For exam-
ple, if P (Brand | “sony ericsson”) = 0.85, the phrase “sony
ericsson” will be placed in the lexicon Brand2. This binning
strategy produces lexicons c1, . . . , c10 for a semantic class c.

Seed phrases may not exist in the list graph. In this case,
they can be either included in the lexicons according to their
initial distribution, or not used at all. We will address this
in Section 5.

4. GRAPH LEARNING ALGORITHMS
We present two graph learning algorithms here. The first

was proposed in [19] and was used for semi-supervised se-
mantic class learning. The second is based on the algorithm
for semi-supervised learning of query classification proposed
in [9]. While the former can operate on arbitrary weighted
graphs, the latter was specifically designed for weighted bi-
partite graphs. None of the two algorithms was originally
used to obtain lexicon features for a sequential tagger. Both
algorithms have the same computational complexity – each
iteration is temporally and spatially linear to the number of
edges in the graph.

4.1 Algorithm I
In [19], a high precision learning algorithm was applied

to acquire semantic classes from free text, based on dis-
tributional similarity and template patterns. The classes
were subsequently expanded based on a bipartite graph con-
structed from HTML tables. To improve the precision of
the semantic class, the algorithm introduces an additional
pseudo-class ⊥, which represents “lack of information for se-
mantic class assignment.” All nodes in the graph that are

22 was used in the experiments reported, which yielded bet-
ter results than without pruning.

not in the seed set are assigned an initial distribution L⊥

with L⊥(⊥) = 1.
Algorithm I
Input: G = (V, E, W ), seeds V ′ ⊆ V ,

seed distributions {F 0

v : ∀v ∈ V ′}
Output: Distribution {F ∗

v : ∀v ∈ V }

1. F 0

v = L⊥ = (0, 0, ..., 1), ∀v ∈ V − V ′

2. repeat
3. for all v ∈ V do
4. Cv =

∑

u W (u, v)F i−1

u

/
∑

u W (u, v), ∀u ∈ V
5. F i

v = pcont
v × Cv + pinj

v × F 0

v + pabnd
v × L⊥

6. until the sequences F i
v converges to F ∗

v , ∀v ∈ V.
The algorithm can be interpreted as as combination of

distribution propagation and random graph walks. Here W
is a square matrix, W (u, v) stands for the weight on the
edge (u, v) ∈ E. Cv is the influence on the distribution
of the node v from its adjacent nodes in the graph, which
is normalized by the sum of all incoming edges’ weights to
make it a proper probabilistic distribution. The parameters
pcont

v , pinj
v and pabnd

v (pcont
v + pinj

v + pabnd
v = 1) respectively

represent the probabilities of three different actions that can
be taken at v during the random walk – continue the walk to
an adjacent node; stay at current node v; or stop the walk.
They can be set with heuristics based on a node’s fan-out
entropy [19].

4.2 Algorithm II
The second graph learning algorithm stems from [23], and

was applied to semi-supervised learning of query classifica-
tion by leveraging query-click graph[9]. Instead of perform-
ing learning on generic graphs, this algorithm focuses on
bipartite graphs: The nodes of the graph can be partitioned
to two sets, I and L, such that there is no edge between any
two nodes in the same set. The weight matrix W is |I |× |L|
instead of the square matrix in Algorithm I. The algorithm
listed below first “normalizes” W to B = D−1/2W . Here D
is a diagonal matrix in which di,i equals the sum of all ele-
ments in the ith row (or column) of WW T . Intuitively, di,i

is the “volume” of all length-of-two paths starting at node
vi. Since the graph is bipartite, this ensures that the prop-
agation of distributions from phrases to lists then back to
phrases will not introduce additional probability mass.

Algorithm II
Input: G = (I ∪ L, E, W ), seeds V ⊆ I ,

seed distributions {F 0

v : ∀v ∈ V }
Output: Distribution {F ∗

v : ∀v ∈ I}

1. F 0

v = (0, 0, ..., 0), ∀v ∈ I − V

2. B = D−1/2W.
3. repeat
4. Hi

v =
∑

u∈I B(u, v)F i−1

u ∀v ∈ L
5. normalize Hi

v, ∀v ∈ L.
6. F i

v = (1 − α)
∑

u∈L B(v, u)Hi
u + αF 0

v , ∀v ∈ I
7. normalize F i

v, ∀v ∈ I .
8. until the sequences F i

v converges to F ∗
v , ∀v ∈ I.

The algorithm first propagates the distribution of the nodes
u ∈ I (list entries) to the nodes v ∈ L (HTML lists) to obtain
Hi

v, a semantic class distribution for v, then propagates back
from the distribution of nodes in L to F i

v, the distribution
of v ∈ I . The parameter α regularizes the graph-learning.
Unlike the F i

v’s in Algorithm I, neither Hi
v nor F i

v is a prob-
abilistic distribution right after the distribution propagation



(line 4 and 6), so they need to be normalized inside the re-
peat loop.

Algorithm I and II are similar in the sense that both are
learning multiple competing semantic classes simultaneously
via distribution propagation. Algorithm II differs from Al-
gorithm in the following three aspects:

1. No inclusion of ⊥ as a dummy competing semantic
class in Algorithm II. Because precision is its major
performance metric, Algorithm I is more conservative
when the evidence for introducing a new instance to a
class is not strong. In contrast, Algorithm II is con-
servative in adding a phrase to a class only if it can
potentially be an instance of a competing class. This
leads to a difference in the size of acquired lexicons, as
we will discuss later.

2. Weight normalization. The matrix in Algorithm I is
not pre-normalized. The influence of a phrase node
on a list node is asymmetric to the influence of the
list node on the phrase node. Algorithm II performs
matrix pre-normalization in line 2, the influence of a
phrase node on a list node is symmetric to the influence
of the list node on the phrase node.

3. Fewer parameters to set for graph-based learning. Al-
gorithm I uses node specific parameters pcont

v , pinj
v and

pabnd
v , whereas Algorithm II has a single regularization

weight α.

In practice, we do not learn with Algorithm II till full con-
vergence. We noticed that too many (around 100) iterations
make the tagging results significantly worse – this is related
to the over-fitting problem that will be discussed in Section
5.3. In the experiments reported in the next section, we
stopped at iteration 5 and used 0 for α. Because of the
early stop of graph learning, the effect of the value of α is
not significant as long as it is not too far away from the
small value (0.01) suggested in [22].

5. EXPERIMENTS AND EVALUATIONS
This section compares the effectiveness of the two semi-

supervised lexicon learning algorithms for the purpose of
query tagging. A series of experiments are then conducted
to explain the performance difference between the two al-
gorithms. The experiments lead to the discovery of a more
adequate lexicon learning objective that is crucial for effec-
tive sequential labeling.

5.1 Data and Experiment Setup
We have conducted experiments with a data set of prod-

uct search queries logged by a commercial search engine,
which was manually labeled by annotators. Since much of
the data was labeled using Mechanical Turk, it is very noisy
and contains many inconsistent labelings. The test sets have
been examined and corrected by an independent expert an-
notator, while the training sets have not been altered.

We compared tagging accuracy on the test set for three
different conditions: using CRFs without lexicon features,
using CRFs with lexicon features obtained by Algorithm I,
and using CRFs with lexicon features obtained by Algorithm
II. For some product categories including Computing and
Electronics (C&E) and Clothing and Shoes (C&S), struc-
tured databases are available, from which one can directly

Table 3: The size of the training and test data
Training Set Test Set

# Samples # Words # Samples # Words
Overall 27410 239362 4420 23476
C&E 14843 134362 669 3572
C&S 4122 36774 898 4804

extract lexicons for each semantic class. In addition to the
above conditions, we also compared the performance of a
tagger with the semi-automatically acquired lexicons to a
tagger with lexicons extracted from these databases on the
datasets of these two categories. Table 3 shows summary
statistics of these datasets.

The baseline tagging model is a linear chain CRF. It uses
the state transition features fTR

i,j to capture the influence of
context on the tag assigned to a given word:

fTR
i,j (yt−1, yt,x, t) = δ(yt−1 = i)δ(yt = j) (3)

where i, j are states (labels) of the model. It is reported in
[10] that the transition features play a very important role
in improving the tagging accuracy for the task.

In addition, the baseline tagger uses unigram fUG
w,j and

bigram fBG
w,w′ ,j features to capture the dependency on the

identity of the current (and previous) words:

fUG
w,j (yt−1, yt,x, t) = δ(xt = w)δ(yt = j) (4)

fBG
w,w′ ,j(yt−1, yt,x, t) = δ(xt−1 = w)δ(xt = w′)δ(yt = j)

where w, w′ are words and j is a model state (label).
In conditions other than the baseline, lexicon features

(a.k.a. word cluster features) are also included:

fLEX
L,j (yt−1, yt,x, t) = δ (L ⇒ [xt]) δ (yt = j) (5)

where L is a lexicon, L ⇒ [xt] means that an entry in L is
a substring of x that covers xt. j is a label.

The performance of CRF tagging is measured by word
level labeling accuracy – the percentage of words that are
assigned the correct labels by the model. This measure was
chosen since we found that it correlated well with assess-
ments of end-to-end search quality.

5.2 Results
Unless mentioned otherwise, the experiment results in this

section were obtained by excluding the seed phrases that do
not exist in the bipartite graph from the learned lexicons.

In the first experiment, we examine the contributions of
lexicons at different strata to the tagging accuracy. Figure 2
shows the test set word level query tagging accuracy as dif-
ferent numbers of lexicon strata are included in the model
for each semantic class. When only the top stratum (which
contains the highest posterior instances) is included, there
is little difference between Algorithm I and Algorithm II. As
more strata of lexicons are used, the CRF with stratified lex-
icons learned by Algorithm II achieves improved word level
tagging accuracy. The accuracy plateaus after the seven top
strata of lexicons are included. In contrast, the performance
of the CRF with lexicons learned by Algorithm I does not
change much as more strata of lexicons are included. While
the number of lexicon strata has little impact on tagging
accuracy after the seventh stratum, it does make a prac-
tical difference with respect to running time and memory
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Figure 2: Word level tagging accuracy in relation
to the number of strata of lexicons included in the
CRF model for each learned semantic class
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Figure 3: Word level tagging accuracy of the CRFs
trained without lexicon features; with lexicon fea-
tures learned by Algorithm I or Algorithm II

usage. For example, about 1/3 of entries are at the lowest
stratum in the lexicons learned by Algorithm II – getting
rid of them can significantly reduce the memory footprint.
Also, note that the lowest stratum only contains phrases
that have been assigned an extremely small posterior of <
0.1, and collectively the ten lexicon strata contain all phrases
in the pruned bipartite graph. For these reasons, we drop
the lowest stratum from all experiments, and only use the
top nine lexicon strata.

Figure 3 compares CRF word level tagging accuracy us-
ing no lexicon features, using lexicons learned by Algorithm
I, and using lexicons learned by Algorithm II as different
numbers of labeled samples are used for obtaining seeds and
training the CRF. Lexicons learned by Algorithm II improve
the accuracy by 4% to 9% absolutely over the model us-
ing no lexicon features (up to 25% relative error reduction);
whereas the lexicons learned by Algorithm I degrade the tag-
ging accuracy. Another important observation can be made
in Figure 3: trained with only 5% of the training data, the
CRF using the lexicon features obtained by Algorithm II
has already outperformed the CRF trained with all training
data but without using the lexicon features. Algorithm II
can therefore greatly reduce the workload of data annota-
tion.

In the next experiment, we compare the performance of
the CRFs using lexicons extracted from the structured database

and lexicons learned with each of the two graph learning al-
gorithms on the C&E and C&S test data. Figure 4 plots
the word level tagging accuracy in relation to the number of
training samples used. For the C&E category, the lexicons
extracted from the database perform at a similar level as
the lexicons learned by Algorithm II. As the training data
increases, the model using no lexicon features achieves a sim-
ilar level of accuracy as the models that use the lexicon fea-
tures. This is mainly due to the fact that there are enough
training samples and the diversity of interests in different
products in C&E is not as significant as in other categories.
The lexicons learned by Algorithm I, however, degrade per-
formance. For the C&S category, both the CRFs using lex-
icon features with the lexicons acquired by Algorithm II or
extracted from the database achieve significantly improved
tagging accuracy over the baseline model. The lexicons
learned by Algorithm I, again, hurt accuracy. The models
using lexicons from Algorithm II have additional gains over
the models using the database lexicons – about 2% absolute
in most cases.
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Figure 4: Word level tagging accuracy of the CRFs
without lexicon features; with lexicon features,
where lexicons were either obtained from structured
database, learned by Algorithm I or II. Top chart:
C&E. Bottom chart: C&S category

Finally, it is also interesting to note that the machine
learning based approaches have superior performance to a
rule based system: Using only the entries from the database
as rules and a disambiguation strategy based on the prior
probability of semantic classes, the word level tagging accu-
racy reaches 54.8% for the C&E test set and 48.4% for the
C&S test set – far less than the 90% and 69% obtained by
the CRFs.



Table 4: Number of lexical phrases for different se-
mantic classes for the C&E and C&S categories

DB Lexi. Algo. I Algo. II
Brand 3752 1150 77056
Merchant 29 67 1679

C&E Model 91267 1945 43829
Type 3133 3019 143563
Attribute 2792 3166 273464

Brand 1069 609 56698
C&S Model 2827 367 16263

Type 1070 623 54569
Attribute 648 1140 122894

5.3 Analyses
What are the key factors that lead to the different behav-

ior of Algorithm I and II? It was a surprise that Algorithm I
degraded the accuracy of the baseline CRFs using no lexicon
features. In this subsection, as an aftereffect, we compare
the lexicons acquired by the two algorithms with the seeds
extracted from the entire training sets. The first difference
we noticed is the collective size of the top nine strata of lex-
icons learned by the two algorithms. Table 4 shows the size
of the lexicons for different semantic classes for the C&E and
C&S categories. Compared to the lexicons extracted from
the database or learned by Algorithm I, the lexicons learned
by Algorithm II are at least an order of magnitude larger
(the only exception is C&E Model for which the database
is extremely comprehensive). The semantic lexicons learned
with the overall data have similar patterns as with the C&E
and C&S categories.

The lexicon size of a semantic class has direct impact on
the classifier’s performance on the semantic class. Table 5
shows the precision, recall and F1 score on each semantic
class, of the model trained with all training data. When
the lexicon size is too small (e.g., Merchant), the perfor-
mance (especially recall) suffers. Table 6 shows the number
of semantic class instance occurrences and types (multiple
occurrences of the same instances are counted once) in the
test set, as well as the coverage of different lexicons for these
instances. While coverage explains the superior performance
of Algorithm II, it is clearly not the only factor since Algo-
rithm I learned lexicons have similar (or better) coverage
as the lexicons extracted from the database for C&E and
C&E, yet their performance is much worse than the DB lex-
icons. Furthermore, the learned lexicons are quite different
from the DB lexicons even though they have similar perfor-
mance as in the case of the DB and Algorithm II learned
lexicons for the C&E category – they do not overlap much
as illustrated by the last two rows in Table 6. However, the
Algorithm II learned lexicons cover almost all the test set
instances covered by the DB lexicons, which suggests that
Algorithm II is good at acquiring the popular semantic class
instances that occurs frequently in the test set.

What are the other factors that affect the tagging perfor-
mance? Naturally question may be raised about the qual-
ity of the learned lexicons, especially the huge one learned
by Algorithm II. We believe that a more fundamental ques-
tion is what metrics the quality should be measured against.
The traditional precision-centric metrics may be irrelevant:
Since the lexicons are hidden from users, over-generalizing
a lexicon may not affect the final tagging accuracy – as long

Table 5: The performance of each semantic class
Semantic classes Precision Recall F1

Brand 0.59 0.84 0.69
Model 0.67 0.54 0.60
Merchant 0.42 0.06 0.10
Type 0.85 0.84 0.84
Attribute 0.66 0.28 0.39

Table 6: Test set semantic class instance coverage
C&E C&S

Lexicon Coverage Coverage
Size Type Occ. Size Type Occ.

736 1195 945 1597
DB 100973 229 570 5614 209 754
Algo I 9347 392 833 2739 205 761
Algo II 539591 606 1028 250424 683 1248
DB∩I 1295 159 498 489 123 624
DB∩II 11241 210 551 2991 203 746

as it does not cause confusion in discriminating among the
semantic classes of interest to the current task (here this
includes the agglomerated “Negative” class).

If only the lexicons are used for query tagging without
other features, they can keep growing as long as their growth
brings more benefit than harm to the query tagger. Here,
the benefit is the number of semantic class instances in the
test set that are correctly covered by the lexicon (true posi-
tives, TP). The harm is the mislabeling of a word sequence
as a semantic class due to overgeneralization (false positives,
FP). Figure 5 shows the FP/TP ratio in relation to the num-
ber of stratified lexicons of each semantic class included –
the statistics are collected by simply using the lexicons as
matching rules in a rule-based system. No CRFs are used in
this and the next experiment for precision/recall. We also
include the lexicons obtained from the structured database;
since these are not stratified, their FP/TP ratio is a hori-
zontal line. The curve for Algorithm I is much flatter than
that for Algorithm II. That implies that the precision of the
lexicons from Algorithm I is much higher than that from Al-
gorithm II as more strata of lexicons are included. However,
the ratio is still below 1 (benefit is greater than harm) for Al-
gorithm II after the 8th stratified lexicon is included (which
covered 61% of the total acquired semantic class instances
for C&E and 58% for C&S.) This shows that Algorithm II
expands the lexicon more aggressively (thus results in higher
coverage for instances in the test queries). In the mean time
it also maintains a low level of confusion. The statistics here
directly correlate with the CRF’s behavior in Figure 2 – ac-
curacy keeps improving until around the seventh stratum of
lexicons learned by Algorithm II is included in the model.

The capability of maintaining a lower confusion level dur-
ing lexicon growth can be largely attributed to the fact that
the learning algorithms propagate entire class distributions
instead of only a single class’ probability, as is common in
other approaches such as PageRank [13]. Because competing
semantic classes in a given task are learned simultaneously,
a phrase that occurs in multiple lists containing seed phrases
from different semantic classes will not be able to get a high
posterior probability for a specific class. Consequently, in-
trinsically ambiguous phrases are less likely to end up in



0.1

1

10
F
P

/T
P

 R
a

ti
o

 i
n

 L
o

g
 S

ca
le

DB Lexicon Algorithm I Algorithm II

0.01

0.1

1

10

0 2 4 6 8 10

F
P

/T
P

 R
a

ti
o

 i
n

 L
o

g
 S

ca
le

Stratified Lexicons Included

DB Lexicon Algorithm I Algorithm II

0.1

1

10

F
P

/T
P

 R
a

ti
o

 i
n

 L
o

g
 S

ca
le

0.01

0.1

1

10

0 2 4 6 8 10

F
P

/T
P

 R
a

ti
o

 i
n

 L
o

g
 S

ca
le

Stratified Lexicons Included

Figure 5: FP/TP ratio on the test set semantic
classes for the lexicons extracted from database or
learned with different algorithms. Top chart: C&E.
Bottom chart: C&S

the top strata of lexicons. This has the advantage that in
cases of ambiguity a CRF can put more emphasis on other
contextual features, such as state transitions.

By varying the number of stratified lexicons included, we
plot the training and test set semantic class instance re-
call/precision curves in Figure 6. The lexicon extracted
from the database is represented by a single point in each of
the charts for C&E and C&S, since it is not stratified. At
the same precision level, the lexicons learned by Algorithm
II have much higher recall of the test set semantic class
instances than the lexicons extracted from the databases.
With more strata included, the precision of the lexicons
learned by Algorithm I is much higher. In fact, both preci-
sion and recall on test data do not change very much. This
explains why tagging accuracy does not change much as
more lexicons learned by Algorithm I are included in the
CRF, as illustrated in Figure 2. In contrast, Algorithm II
has a better recall on test data when more stratified lexicons
are included. On the other hand, because the seed data is
taken from the training sample, the learned lexicons have a
high recall of semantic class instances on the training set.
That high recall may not be available on the test set if the
learning algorithm is conservative for better precision. This
is exactly what we observe in Figure 6: the training data
curve of Algorithm I has much larger recall than the cor-
responding test data curve, whereas the difference is much
smaller with the curves for Algorithm II. In fact, in the case
of the C&E data, the test data recall is often larger than
that of the training data for Algorithm II. In summary, the
precision/recall curves of the training data and test data are
much more similar for the lexicons learned by Algorithm II
than those learned by Algorithm I.

Note that the FP/TR ratios in Figure 5 and the precisions
in Figure 6 do not reflect the ability of ambiguity resolution
of the lexicons learned by Algorithm II – every match of a
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Figure 6: Recall/Precision curves of the lexicons.
Top chart: C&E. Middle chart: C&S category. Bot-
tom chart: overall data

test set instance by a lexicon of a wrong class was counted
as an error without considering the competition from the
lexicons of the correct semantic class. Table 7 compares the
stratum of the correct semantic class lexicon covering a test
set instance phrase with the highest stratum among the lex-
icons of competing semantic classes. It reports the number
(and percentage) of times that the correct semantic class lex-
icon has higher, equal or lower rank (hence higher, similar or
lower posterior probability) than the lexicons of competing
semantic classes. In most cases, the correct semantic class
has higher posterior probability. Therefore, the potential
benefit of over-generalizing the lexicon is even larger than it
seems to be in Figure 5.

The degradation of tagging accuracy with the lexicons
learned by Algorithm I can be attributed to model over-
fitting. Because of the large discrepancy of recall between
the training and test set in the case of Algorithm I, as il-
lustrated by Figure 6, the learned models rely too much on
the lexicon features and do not generalize well to the test
data. The over-fitting of the lexicon features may depress
the contribution of other important features to the final tag-
ging decision, such as state transitions features. Table 8



Table 7: Stratum comparison of the ambiguous lex-
icons that cover a test set instance phrase. The
lexicons of the correct semantic classes have higher
ranks for 70% or more of test set instance occurrence
than those of competing semantic classes

Higher Equal Lower
Overall 4881 (70.5%) 621 (9.0%) 1424 (20.6%)
CE 925 (80.7%) 65 (5.7%) 156 (13.6%)
CS 1025 (69.3%) 157 (10.6%) 297 (20.1%)

compares the average absolute values of the weights for the
lexicon features and those for other features learned by the
CRF models with the DB lexicons, the lexicons learned by
Algorithm I and the lexicons learned by Algorithm II. It is
clear that the models based on the lexicons learned by Al-
gorithm I have the highest ratios of lexicon feature weights
and other feature weights, while the models based on the
lexicons learned by Algorithm II have the lowest such ra-
tios. The ratios correlate well with the tagging accuracy.
It clearly indicates that over-fitting the lexicon features is
the major problem with the models based on the lexicons
learned by Algorithm I.

Table 8: Comparison of the average absolute val-
ues of the weights between the lexicon features and
other features

Lexicon Others Ratio

Overall Algorithm I 0.530 0.129 4.109
Algorithm II 0.430 0.249 1.727

Algorithm I 0.452 0.127 3.559
C&E Algorithm II 0.411 0.235 1.749

DB Lexicon 0.556 0.209 2.660

Algorithm I 0.360 0.111 3.243
C&S Algorithm II 0.410 0.190 2.158

DB Lexicon 0.651 0.226 2.881

We found that more restrictive regularization helped but
was not able to bring the accuracy on par with the CRFs
using no lexicon features – in fact the word level tagging ac-
curacy we reported earlier was obtained with tuned regular-
ization parameters. Surprisingly, the high precision makes
the problem even worse! Since the higher precision is also
observed in the training set, the learned model is more confi-
dent on relying on the lexicon features. In the extreme case,
if all training set instances of semantic classes are covered
by lexicons (100% recall) and the lexicon for each seman-
tic class does not cover any training set instances of other
semantic classes (100% precision), the learner will treat the
lexicon features (match of lexicon entries) as the necessary
and sufficient condition for a substring to be labeled as a
semantic class – though the condition may not hold at all
on the test set. This explains the observation that the CRFs
using lexicon features based on the lower precision database
lexicons outperform the higher precision lexicons learned by
Algorithm I, when the two sets of lexicons have similar level
of recall on test data.

Precision-centric learning is particularly harmful when the
knowledge is acquired from HTML lists, due to the high
noise level of the lists – focusing on precision with noisy
inputs implies an even more conservative learning strategy
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Figure 7: The effect of adding seed phrases not in
the bipartite graph into the lexicons, for lexicons
learned with Algorithm I and II

hence lower coverage of the test set instances. On the other
hand, since the training set instances are used as seeds, they
have a high chance to be covered by the learned lexicons.
Therefore the mismatch between the training and test data
becomes more severe.

The final experiment confirms that over-fitting is the cul-
prit. In the experiment results reported so far, we have ex-
cluded the seed phrases that do not exist in the bipartite list
graph from the lexicons. If we include those in the lexicons
according to their initial distribution, we get 100% coverage
of the training data semantic classes. This, on one hand,
increases the coverage of the test set semantic classes, on
the other hand, makes the over-fitting problem even worse.
Figure 7 shows that adding these seed indeed degrades the
performance for both algorithms on the entire test set. The
degradation is more severe for Algorithm I because the preci-
sion of the lexicons is so high that the model almost learned
to make decisions solely based on lexicon features.

N-fold cross-learning of lexicons and CRFs may alleviate
the over-fitting problem of Algorithm I. However, prelimi-
nary results show little improvement for Algorithm II with
10-fold cross learning – over-fitting is not a big issue there.

6. DISCUSSIONS AND CONCLUSIONS
We applied two different semi-supervised graph learning

algorithms to acquire semantic class lexicons from Web lists,
and used the lexicons as features in CRFs for query tagging.
One algorithm resulted in significant improvements in query
tagging accuracy, and substantially reduced the human ef-
fort needed to manually label training data.

By comparing the behavior of two algorithms, we found
that the precision-centric learning algorithms are not suit-
able for use in sequential labeling tasks, due to the problem
of over-fitting. Instead, it is better to over-generalize the
learned lexicons to result in a similar recall on the train-
ing and the test set, while maintaining a low level of con-
fusion among the semantic classes of interest. This can
be achieved by simultaneously learning lexicons of multi-
ple competing classes via distribution propagation. We note
that each of the two algorithms discussed was not designed
for the purpose of lexicon acquisition for query tagging.
Each can be enhanced to increase the recall of semantic class
instances. While the present work compares existing algo-
rithms adapted to our task of query tagging, we are plan-



ning to develop novel algorithms based on our insights in
the future. For example, we can quantify “confusability”
and include it in an objective function (together with lex-
icon coverage), such that new learning algorithms can be
designed to directly optimize the objective function.

The major contribution of the present work lies in reveal-
ing the key factors in semi-supervised lexicon acquisition
that make it successful in a sequential labeling task. While
we studied these factors in the context of query tagging, we
are confident that the conclusions extend beyond that. In
fact, the lessons learned in this work provide a general guide-
line for future research on semi-supervised knowledge acqui-
sition for sequential labeling tasks. Importantly, this applies
to our finding that knowledge acquisition should adopt an
objective that ensures that the knowledge acquired through
partial-supervision from the training set has similar proper-
ties on the training set as well as an independent develop-
ment set. Only then the sequential labeling model will not
over-fit the knowledge obtained in a semi-supervised fashion.
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