
Information Extraction from Wikipedia:
Moving Down the Long Tail

Fei Wu, Raphael Hoffmann, Daniel S. Weld
Computer Science & Engineering Department
University of Washington, Seattle, WA, USA

{wufei, raphaelh, weld}@cs.washington.edu

ABSTRACT
Not only is Wikipedia a comprehensive source of quality informa-
tion, it has several kinds of internal structure (e.g., relational sum-
maries known asinfoboxes), which enable self-supervised infor-
mation extraction. While previous efforts at extraction from Wiki-
pedia achieve high precision and recall on well-populated classes
of articles, they fail in a larger number of cases, largely because
incomplete articles and infrequent use of infoboxes lead toinsuf-
ficient training data. This paper presents three novel techniques
for increasing recall from Wikipedia’s long tail of sparse classes:
(1) shrinkage over an automatically-learned subsumption taxon-
omy, (2) a retraining technique for improving the training data, and
(3) supplementing results by extracting from the broader Web. Our
experiments compare design variations and show that, used in con-
cert, these techniques increase recall by a factor of 1.76 to8.71
while maintaining or increasing precision.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Management, Design

Keywords
Information Extraction, Wikipedia, Semantic Web

1. INTRODUCTION
We are motivated by a vision of self-supervised informationex-

traction — systems which can autonomously gather and organize
semantic data from a large number of Web pages. Such a system
could be useful for next-generation information retrieval, question
answering and much more. Autonomy is crucial, since the scale of
available knowledge is vast. We share this vision with a number
of other projects, such as Snowball [1], KnowItAll [10] and Tex-
trunner [3], but in contrast to systems which seek to extractfrom
arbitrary Web text, we argue that Wikipedia is an important focus
for extraction. If we can render much of Wikipedia into semantic
form, then it will be much easier to expand from that base.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

Article Number Distribution vs. Infobox Class

0

1

2

3

4

5

1 109 217 325 433 541 649 757 865 973 1081 1189 1297 1405 1513 1621 1729 1837

Infobox ID (sorted in descending order of number of articles contained)

L
o
g
(a

rt
ic

le
 n

u
m

)

 d
d

Figure 1: The number of article instances per infobox class has
a long-tailed distribution.

Focusing on Wikipedia largely solves the problem of inaccurate
and unreliable source data [11], but introduces new challenges. For
example, many previous systems (e.g., Mulder [12], AskMSR [5],
and KnowItAll [10]) exploit the presence of redundant information
on the Web, enabling powerful statistical techniques; however, the
Wikipedia corpus has greatly reduced duplication. On the other
hand, Wikipedia has several attributes that significantly facilitate
extraction: 1) Infoboxes, tabular summaries of an object’skey at-
tributes, may be used as a source of training data, allowing for
self-supervised learning. 2) Wikipedia gives important concepts
their own unique identifier — the URI of a definitional page. The
first reference to such a concept often includes a link which can be
used for disambiguation. As a result, homonyms are much lessof a
problem than in unstructured text. 3) Wikipedialistsandcategories
provide valuable features for classifying pages.

In previous work, we developed Kylin — a self-supervised sys-
tem for information extraction from Wikipedia [26]. Kylin looks
for sets of pages with similar infoboxes, determines commonat-
tributes for each class, creates training examples, learnsextractors,
and runs them on each page — creating new infoboxes and com-
pleting others.

1.1 The Long-Tailed Challenge
Kylin works extremely well for popular infobox classes where

users have previously created sufficient infoboxes to trainan effec-
tive extractor model. For example, in the “U.S. County” class Kylin
has97.3% precision with95.9% recall. Unfortunately, however,
many classes (e.g., “Irish Newspapers”) contain only asmall num-
ber of infobox-containing articles. As shown in Figure 1, 1442 of
1756 (82%) classes have fewer than 100 instances, and 709 (40%)
have 10 or fewer instances. For classes sitting on this long tail,
Kylin can’t get enough training data — hence its extraction perfor-
mance is often unsatisfactory for these classes.

Furthermore, even when Kylin does learn an effective extrac-
tor there are numerous cases where Wikipedia has an article on
a topic, but the article simply doesn’t have much information to
be extracted. Indeed, another long-tailed distribution governs the

lengthof articles in Wikipedia; among the 1.8 million pages,1 many
are short articles and almost 800,000 (44.2%) are marked asstub
pages, indicating that much-needed information is missing.

In order to create a comprehensive semantic knowledge base
summarizing the topics in Wikipedia, we must confront both of
these long-tailed challenges. We must train extractors to operate
on sparsely populated infobox classes and we must resort to other
information sources if a Wikipedia article is superficial.

1.2 Contributions
In this paper we describe three novel approaches for improving

the recall of extraction of Wikipedia infobox attribute values.

• By applying shrinkage [24, 16] over an automatically-learned
subsumption taxonomy, we allow Kylin to substantially im-
prove the recall of its extractors for sparse infobox classes.

• By mapping the contents of known Wikipedia infobox data
to TextRunner, a state-of-the-art open information extraction
system [3], we enable Kylin to clean and augment its training
dataset. When applied in conjunction with shrinkage, this
retraining technique improves recall by a factor of between
1.1 and 5.9, depending on class.

• When it is unable to extract necessary information from a
Wikipedia page, we enable Kylin to retrieve relevant sen-
tences from the greater Web. As long as tight filtering is
applied to non-Wikipedia sources, recall can be still further
improved while maintaining high precision.

Our techniques work best in concert. Together, they improve
recall by a factor of 1.76 to 8.71 while maintaining or increasing
precision. The area under the precision-recall curve increases by a
factor of between 1.96 to 23.32, depending on class. In addition to
showing the great cumulative effect of these techniques, weanalyze
several variations of each method, exposing important engineering
tradeoffs.

2. BACKGROUND: EXTRACTION IN KYLIN
We start by defining the problem under consideration: infobox

completion. Recall that an infobox is a relational summary of an
article: a set of attribute / value pairs describing the article’s sub-
ject (see [26] for an example). Not every article has an infobox
and some infoboxes are only partially instantiated with values. We
seek to create or complete infoboxes whenever possible. Given a
Wikipedia page, we seek to identify the infobox class, thus retriev-
ing its associated schema, and extract as many attribute values as
possible from the article (or possibly from the greater Web). In this
paper, we concentrate on the extraction process — specifically on
increasing recall for sparse classes.

Before describing our three new methods for increasing Kylin’s
recall, we review the system’s basic architecture [26]. As shown in
Figure 2, Kylin has three primary components: the preprocessor, a
module which generates classifiers, and one which generatesCon-
ditional Random Fields (CRF) [13] extractors. The figure shows
the data flow, but the components are invoked in a pipeline in the
order described above. We describe them in turn.

2.1 Preprocessor
The preprocessor selects and refines infobox schemata, choosing

relevant attributes; it then generates machine-learning datasets for

1Unless noted otherwise, all statistics are taken from the
07/16/2007 snapshot of Wikipedia’s English language version.

Figure 2: Kylin performs self-supervised information extrac-
tion, using Wikipedia inforboxes for training data.

training sentence classifiers and extractors. Refinement isneces-
sary for several reasons. For example,schema driftoccurs when au-
thors create an infobox by copying from a similar article andchang-
ing attribute values. If a new attribute is needed, they justmake up
a name, leading to schema and attribute duplication. For example,
six different attribute names are used to describe the location of an
“Actor’s” death: “death location”, “deathlocation”, “death_place”,
“deathplace”, “place_of_death” and “location of death”.

The initial Kylin implementation used a naive approach to refine-
ment: scanning the corpus and selecting all articles with the same
infobox template name. Only the attributes used in at least15% of
the articles were selected. As we discuss in the next section, one
benefit of building a taxonomy over the set of infobox classesis the
ability to recognize closely related and duplicate classes.

The preprocessor constructs two types of training datasets—
those for sentence classifiers, and CRF attribute extractors. For
each article with an infobox mentioning one or more target at-
tributes, Kylin tries to find a unique sentence in the articlethat
mentions that attribute’s value. The resulting labelled sentences
form positive training examples for each attribute; other sentences
form negative training examples. If the attribute value is mentioned
in several sentences, then one is selected heuristically.

2.2 Generating Classifiers
Kylin learns two types of classifiers. For each class of article be-

ing processed, a heuristicdocument classifieris used to recognize
members of the infobox class. For each target attribute within a
class asentence classifieris trained in order to predict whether a
given sentence is likely to contain the attribute’s value.

Robust techniques exist for document classification (e.g.,Naive
Bayes, Maximum Entropy or SVM approaches), but Kylin’s simple
heuristic technique, which exploits Wikipedia’s list and category
features, worked well.

Sentence classification, i.e. predicting which attribute values (if
any) are contained in a given sentence, can be seen as a multi-class,
multi-label text classification problem. Kylin uses a Maximum En-
tropy model [18] with a variety of features: bag of words, aug-
mented with part of speech (POS) tags. To decrease the impactof
the noisy and incomplete training dataset, Kylin applies bagging
(instead of boosting [19]).

2.3 Learning Extractors
Extracting attribute values from a sentence is best viewed as a

sequential data-labelling problem. Kylin uses the CRF model with
a wide variety of features (e.g., POS tags, position in the sentence,
capitalization, presence of digits or special characters,relation to
anchor text, etc.). Instead of training a single master extractor to
clip all attributes, Kylin trains a different CRF extractorfor each
attribute, ensuring simplicity and fast retraining. As mentioned

Figure 3: Architecture of Kylin Ontology Generactor.

previously, when trained on infobox classes with copious instances
(e.g., 500 or more), Kylin learns excellent extractors. Thepreci-
sion ranged from a percentage in the mid-70s to high-90s and recall
from low-50s to mid-90s, depending on attribute type and infobox
class. Though Kylin is successful on those popular classes,its per-
formance decreases on the long-tail of sparse classes wherethere is
insufficient training data. The next two sections describe new tech-
niques for solving this problem. In Section 5 we explain how we
extend Kylin to handle the long tail of short articles.

3. SHRINKAGE
Although Kylin performs well when it can find enough training

data, it flounders on sparsely populated infobox classes — the ma-
jority of cases. Our first attempt to improve Kylin’s performance
uses shrinkage, a general statistical technique for improving esti-
mators in the case of limited training data [24]. McCallum etal.
applied this technique for text classification in a hierarchy classes
by smoothing parameter estimate of a data-sparse child withits par-
ent to get more robust estimates [16].

Similarly, we use shrinkage when training an extractor of an
instance-sparse infobox class by aggregating data from itsparent
and children classes. For example, knowing thatPerformer IS-
A Person, andPerformer.loc=Person.birth_plc, we can use values
from Person.birth_plcto help train an extractor forPerformer.loc.
The trick is automatically generating a good subsumption hierarchy
which relates attributes between parent and child classes.Thus, we
first describe our method for creating an ontology relating Wiki-
pedia infoboxes, then describe our approach to shrinkage, and end
the section with an empirical exploration of our technique.

3.1 The Kylin Ontology Generator
The Kylin Ontology Generator (KOG) is an autonomous system

that builds a rich ontology by combining Wikipedia infoboxes with
WordNet using statistical-relational machine learning [27]. At the
highest level KOG computes six different kinds of features,some
metric and some Boolean:similarity measures, edit history pat-
terns, class-name string inclusion, category tags, Hearst patterns
search-engine statistics, andWordNetmappings. These features are
combined using statistical-relational machine learning,specifically
joint inference over Markov logic networks [21], extending[23].

Figure 3 shows KOG’s architecture. First, itsschema cleaner
scans the infobox system to merge duplicate classes and attributes,
and infer the type signature of each attribute. Then, thesubsump-

tion detectoridentifies the subsumption relations between infobox
classes, and maps the classes to WordNet nodes. Finally, theschema
mapperbuilds attribute mappings between related classes, espe-
cially between parent-child pairs in the subsumption hierarchy. KOG’s
taxonomy provides an ideal base for the shrinkage technique, as de-
scribed below.

3.2 Shrinkage Using the KOG Ontology
Given a sparse target infobox classC, Kylin’s shrinkage mod-

ule searchs upwards and downwards through the KOG ontology to
aggregate training data from related classes. The two crucial ques-
tions are: 1) How far should one traverse the tree? 2) What should
be the relative weight of examples in the related class compared to
those inC? For the first question, we search to a uniform distance,
l, outward fromC. In answer to the second question, we evaluate
several alternative weighting schemes in Section 3.3. The overall
shrinkage procedure is as follows:

1. Given a classC, query KOG to collect the related class set:
SC = {Ci|path(C,Ci) ≤ l}, wherel is the preset thresh-
old for path length. Currently Kylin only searches strict par-
ent/chidren paths without considering siblings. Take the “Per-
former” class as an example: its parent “Person” and children
“Actor” and “Comedian” could be included inSC .

2. For each attributeC.a (e.g.,Performer.loc) of C:

(a) Query KOG for the mapped attributeCi.aj (e.g.,Per-
son.birth_plc) for eachCi.

(b) Assign weightwij to the training examples fromCi.aj

and add them to the training dataset forC.a. Note that
wij may be a function both of the target attributeC.a,
the related classCi, andCi’s mapped attributeCi.aj .

3. Train the CRF extractors forC on the new training set.

3.3 Shrinkage Experiments
This section addresses two questions: 1) Does shrinkage over

the KOG ontology help Kylin to learn extractors for sparse classes?
What if the target class isnot sparse? 2) What is the best strategy
for computing the training weights,wij? To answer these questions
we used the07/16/2007 snapshot ofen.wikipedia.org as
a source dataset. We tested on four classes2, namely “Irish news-
paper” (which had 20 infobox-contained instance articles), “Per-
former” (44), “Baseball stadium” (163), and “Writer” (2213). These
classes represent various degrees of “sparsity” in order toprovide
better understanding of how shrinkage helps in different cases. For
the “Irish newspaper” and “Performer” classes, we manuallyla-
beled all the instances to compute precision and recall values. Par-
ticularly, we count the ground-truth as the attribute values con-
tained in the articles — meaning a 100 percent recall is getting ev-
ery attribute value which is present in the article. For the “Baseball
stadium” and “Writer” classes, we manually labeled 40 randomly-
selected instances from each. All the following experiments use
4-fold cross validation.

After schema cleaning, KOG identified 1269 infobox classes and
mapped them to the WordNet lattice (82115 synsets). We found
that although the whole ontology is quite dense, the currentnumber
of Wikipedia infoboxes is relatively small and most pathes through
the taxonomy cover three or fewer infobox classes, which dimin-
ishes the effect of path-length thresholdl. Table 1 shows the de-
tailed parent/children classes for each testing case. In the follow-
ing, we mainly focus on testing weighting strategies.
2In average there are around 7 attributes per class, so we actually
tested for around4 × 7 = 28 extractors.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(a) Irish Newspaper

Irish newspaper (20)
Newspaper (1559)

No Shrinkage
Uniform
Size Adjusted
Pre. Directed

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(b) Performer

Performer (44)
Person (1201)
Actor (8738)
Comedian (106)

No Shrinkage
Uniform
Size Adjusted
Pre. Directed

0 0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(c) Baseball Stadium

Baseball stadium (163)
Stadium (1642)

No Shrinkage
Uniform
Size Adjusted
Prec. Directed

0 0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
Pr

ec
isi

on

(d) Writer

Writer (2213)
Person (1201)
Sci−fi writer (36)

No Shrinkage
Uniform
Size Adjusted
Pre. Directed

Figure 4: Regardless of the weighting scheme, extractors trained with KOG-enabled shrinkage outperforms the Kylin baseline —
especially on the sparse “Irish newspaper,” “Performer” and “Baseball stadium” classes where recall is dramatically improved. In
the two sparsest classes, precision is also markedly improved.

Target class Parent Children
Irish newspaper(20) Newspaper(1559) –

Performer(44) Person(1201) Actor(8738)
Comedian(106)

Baseball stadium(163) Stadium(1642) –
Writer(2213) Person(1201) Sci-fi writer(36)

Table 1: Parent/children classes for shrinkage.

We considered three strategies to determine the weightswij for
aggregated data from parent / children classes:
Uniform: wij = 1, which weights all training samples equally.
Size Adjusted: wij = min{1, k

|C|+1
}, wherek (10 in our exper-

iments) is the design parameter, and|C| is the number of instance
articles contained inC. The intuition is that the biggerC is, the
less shrinkage should rely on other classes.
Precision Directed: wij = pij , wherepij is the extraction pre-
cision when applying the extractor forCi.aj on the appropriate
sentences fromC-class articles and comparing them with existing
infobox values.

Even with limited parent / children classes for smoothing, all
forms of shrinkage improve extraction performance. Figure4 shows
the precision / recall curves for our different weighting strategies;
parenthetical numbers (e.g., “Performer (44)” denote the number
of positive examples. We draw several conclusions:

First, with shrinkage, Kylin learns better extractors, especially in
terms of recall. For those very sparse classes such as “Performer”
and “Irish newspapers”, the recall improvement is dramatic: 55%
and 457% respectively; and the area under the precision and recall
curve (AUC) improves 57% and 1386% respectively.

Second, we expected precision-directed shrinkage to outperform
the other methods of weighting, since it automatically adapt to dif-

ferent degrees of similarity between the targent and related classes.
However, the three weighting strategies turn out to performcom-
paratively on the infobox classes used for testing. The mostlikely
reason is that to achieve total autonomy Kylin estimates thepreci-
sion,pij , of an extractor by comparing the values which it extracts
to those entered manually in existing infoboxes. It turns out that in
many cases Wikipedia editors use different expressions to describe
attribute values in the infoboxes than they do in the articletext.
Naturally, this makes the accurate estimation ofpij extremely dif-
ficult. This, in turn, biases the quality of weighting. In thefuture,
we hope to investigate more sophisticated weighting methods.

Finally, Shrinkage also helps the quality of extraction in popular
classes (e.g., for “Writer”), though the improvement is quite mod-
est. This is encouraging, since “Writer” (Figure 1d) already had
over two thousand training examples.

4. RETRAINING
Our experiments show that shrinkage enables Kylin to find extra

datawithin Wikipedia to help train extractors for sparse classes. A
complementary idea is the notion of harvesting additional training
data even from theoutsideWeb? Leveraging information outside
Wikipedia, could dramaticaly improve Kylin’s recall. To see why,
we note that the wording of texts from the greater Web are more
diverse than the relatively strict expressions used in manyplaces in
Wikipeidia.3 Training on a wider variety of sentences would im-
prove the robustness of Kylin’s extractors, which would potentially
improve the recall.

The trick here is determining how to automatically identifyrel-
evant sentences given the sea of Web data. For this purpose, Kylin
3It is possible that Wikipedia’s inbred style stems from a pattern
where one article is copied and modified to form another. A general
desire for stylistic consistency is another explanation.

utilizes TextRunner, an open information extraction system [3],
which extracts relations{r|r = 〈obj1, predicate, obj2〉} from a crawl
of about 100 million Web pages. Importantly for our purposes, Tex-
trunner’ crawl includes the top ten pages returned by Googlewhen
queried on the title of every Wikipedia article. In the next sub-
section, we explain the details of our retraining process; then we
follow with an experimental evaluation.

4.1 Using TextRunner for Retraining
Recall that each Wikipedia infobox implicitly defines a set of

semantic triples{t|t = 〈subject, attribute, value〉} where the sub-
ject corresponds to the entity which is the article’s title.These
triples have the same underlying schema as the semantic relations
extracted by TextRunner and this allows us to generate new training
data.

The retrainer iterates through each infobox classC and again
through each attribute,C.a, of that class collecting a set of triples
from existing Wikipedia infoboxes:T = {t|t.attribute= C.a}.4

The retrainer next iterates throughT , issuing TextRunner queries
to get a set of potential matchesR(C.a) = {r|∃t ∈ T : r.obj1 =
t.subject, r.obj2 = t.value}, together with the corresponding
sentences which were used by TextRunner for extraction. There-
trainer uses this mapped setR(C.a) to augment and clean the train-
ing data forC ’s extractors in two ways: by providing additional
positive examples, and by eliminating false negative examples which
were mistakenly generated by Kylin from the Wikipedia data.

ADDING POSITIVE EXAMPLES: Unfortunately, TextRunner’s
raw mappings,R(C.a), are too noisy to be used as positive train-
ing examples. There are two causes for the noise. The most obvi-
ous cause is the imperfect precision of TextRunner’s extractor. But
false positive examples can also be generated when there aremul-
tiple interpretations for a query. Consider the TextRunnerquery
〈r.obj1 = A, r.predicate =?, r.obj2 = B〉, whereA is a person
andB is his birthplace. Since many people die in the same place
that they were born, TextRunner might return the sentence “Bob
died in Seattle.” — a poor training example for birthplace.

Since false positives can greatly impair training, the Kylin re-
trainer morphologically clusters the predicates which arereturned
by TextRunner (e.g., “is married to” and “was married to” aregrouped).
We discard any predicate that is returned in response to a query
about more than one infobox attribute. Only thek most common
remaining predicates are then used for positive training examples;
in our experiments we setk = 1 to ensure high precision.

FILTERING NEGATIVE EXAMPLES: As explained in [26],
Kylin considers a sentence to be a negative example unless itis
known to be positive or thesentence classifierlabels it as poten-
tially positive. This approach eliminates many false negatives, but
some remain. A natural idea is to remove a sentence from the set
of negative examples if it contains the word denoting the relation
itself. Unfortunately, this technique is ineffective if based soley
on Wikipedia content. To see why, consider thePerson.spouseat-
tribute which denotes the “marriage” relation —because theword
“spouse” seldom appears in natural sentences, few false negatives
are excluded. But by using TextRunner, we can better identify the
phrases (predicates) which are harbingers of the relation in ques-
tion. The most common are used to eliminate negative examples.

4We note that another way of generating the set,T , would be to
collect baseline Kylin extractions forC.a instead of using existing
infoboxes. This would lead to acotraining approach rather than
simple retraining. One could iterate the process of gettingmore
training date from TextRunner with improvements to the Kylin ex-
tractor [4].

By adding new positive examples and excluding sentences which
might be false negatives, retraining generates a greatly improved
training set, as we show in the next subsection.

4.2 Retraining Experiments
We ask two main questions: 1) Does retraining improve Kylin’s

extractors? 2) Do the benfits from retraining combine synergisti-
cally with those from shrinkage? Before addressing those ques-
tions we experimented with different retraining alternatives (e.g.,
just adding positive examples and just filtering negatives). While
both approaches improved extractor performance, the combination
worked best, so the combined method was used in the subsequent
study.

We evaluate retraining in two different cases. In the first case, we
use nothing but the target class’ infobox data to prime TextRunner
for training data. In the second case, we first used uniform-weight
shrinkage to create a training set which was then used to query
TextRunner. Figure 5 shows the results of these methods on four
testing classes.

We note that in most cases retraining improves the performance,
in both precision and recall. When compared with shrinkage,re-
training provides less benefit for sparse classes but helps more on
the popular class “Writer.” This makes sense because without many
tuples to use for querying TextRunner, retraining has little effect.
For example, for “Performer (44)” retraining added 10 positive ex-
amples and filtered 20 negative examples; for “Writer (2213)” re-
training added 2204 positive and filtered 3568 negative examples.
We suspect that full cotraining would be more effective on sparse
classes when shrinkage was unavailable. Finally, we observe syn-
ergy between shrinkage and retraining, leading to the biggest im-
provement. Particularly, on the two sparsest classes “Irish newspa-
per” and “Performer”, the combination improved recall by 585%
and 72% respectively, with remarkable improvement in precision
as well; and the AUC improved 1680% and 74% respectively.

5. EXTRACTING FROM THE WEB
While shrinkage and retraining improve the quality of Kylin’s

extractors, the lack of redundancy of Wikipedia’s content makes it
increasingly difficult to extract additional information.Facts that
are stated using uncommon or ambiguous sentence structureshide
from the extractors. In order to retrieve facts which can’t be ex-
tracted from Wikipedia, we would like to exploit another corpus,
in particular the general Web. On the surface, the idea is simple:
train extractors on Wikipedia articles and then apply them to rele-
vant Web pages. An obvious benefit of this approach is the ability
to find new facts which are not contained in Wikipedia at all.

The challenge for this approach — as one might expect — is
maintaining high precision. Since the extractors have beentrained
on a very selective corpus, they are unlikely to discriminate irrele-
vant information. For example, a Kylin extractor forPerson.birthdate
has been trained on a set of pages all of which have as their primary
subject that person’s life. Such extractors become inaccurate when
applied to a page which compares the lives of several people —
even if the person in question is one of those mentioned.

To ensure extraction quality, it is thus crucial to carefully se-
lect and weight content that is to be processed by Kylin’s extrac-
tors. In our work, we view this as an information retrieval problem,
which Kylin’s web extraction module solves in the followingsteps:
It generates a set of queries and utilizes a general Web search en-
gine, namely Google, to identify a set of pages which are likely to
contain the desired information. The top-k pages are then down-
loaded, and the text on each page is split into sentences, which are
processed by Kylin. Each extraction is then weighted using acom-
bination of factors.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(a) Irish Newspaper

Irish newspaper (20)
Newspaper (1559)

Baseline
Retraining
Shrinkage
Shrink−retrain

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(b) Performer

Performer (44)
Person (1201)
Actor (8738)
Comedian (106)

Baseline
Retraining
Shrinkage
Shrink−retrain

0 0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(c) Baseball Stadium

Baseball stadium (163)
Stadium (1642)

Baseline
Retraining
Shrinkage
Shrink−retrain

0 0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
Pr

ec
isi

on

(d) Writer

Writer (2213)
Person (1201)
Sci−fi writer (36)

Baseline
Retraining
Shrinkage
Shrink−retrain

Figure 5: Used in isolation, retraining enables a modest butmarked improvement in recall. Combining retraining with sh rinkage
yields substantially improved extractors with improvements to precision as well as recall.

CHOOSING SEARCH ENGINE QUERIES: The first important
step is to ensure that the search engine returns a set of highly rele-
vant pages. A simple approach is to use the article title as a query.
For example, let us assume that we are interested in finding the
birth dateof Andrew Murray, a writer. The corresponding Wiki-
pedia page is titled ‘Andrew Murray (minister)’. The information
in parentheses is used in Wikipedia to resolve ambiguities,but we
remove it to increase recall. To improve result relevance, we place
quotes around the remaing string, here“andrew murray” .

Although such a query might retrieve many pages about Mur-
ray, it is possible that none among the top contains the person’s
birth datewhich we might be interested in. We therefore run sev-
eral more restrictive queries which not only limit results to pages
containing the article title, but that also include other keywords to
better target the search.

One such query is the quoted article title followed by the attribute
name, as in“andrew murray” birth date . While this in-
creases the chance that a returned page contains the desiredinfor-
mation, it also greatly reduces recall, because the terms ‘birth date’
might not actually appear on a relevant page. For example, consider
the sentence ‘Andrew Murray was born in 1828.”.

Such predicates which are indicative of attributes, like ‘was born
in’ for the birth date, we have computed already, as described in
section 4. We generate an appropriate query for each predicate,
which combines the quoted title as well as the predicate, as in
“andrew murray” was born in . The combined results of
all queries (title only, title and attribute name, as well astitle and
any attribute predicate) are retrieved for further processing.

WEIGHTING EXTRACTIONS: Pages which do not contain the
preprocessed article title, here ‘Andrew Murray’, are discarded.
Then, using an HTML parser, formatting commands and scripts
are removed, and sentences are identified in the remaining text.

Since most sentences are still irrelevant, running Kylin’sextrac-

tors on these directly would result in many false positives.Recall
that unlike Wikipedia’s articles, web pages often compare multiple
related concepts, and so we would like to capture the likeliness that
a sentence or extraction is relevant to the concept in question. A
variety of features may be indicative of content relevance,but we
focused on two in particular:

• The number of sentencesδs between the current sentence and
the closest sentence containing the (preprocessed) title of the
article.

• The rank of the pageδr on Google’s results lists returned in
response to our queries.

Each retrieved sentence is then sent to Kylin for extraction, and
for each extraction a combined score is computed. This scoretakes
into account both factorsδs and δr as well as the confidenceδc

reported by Kylin’s extractors; it is obtained in the following way:
First, each of the three parametersδs, δr, δc is normalized by apply-
ing a linear mapping into the intervals[αs, 1], [αr, 1], and[αc, 1]
respectively, where 1 corresponds to the optimal value andαs, αr,
andαc are user-defined parameters. Withδ∗s , δ∗r , andδ∗c denot-
ing the normalized weights, the combined score is then obtained as
scoreweb := δ∗s ∗ δ∗r ∗ δ∗c .

COMBINING WIKIPEDIA AND WEB EXTRACTIONS: Our
final question is: how can we combine extraction results fromWi-
kipedia and the Web? Despite our efforts in identifying relevant
Web pages and weighting sentences, it is likely that extractions
from Wikipedia will be more precise. After all, in Wikipediawe
can be sure that a given page is highly relevant, is of high quality,
and has a more consistent structure, for which Kylin’s extractors
have been particularly trained. Yet, Kylin may err on Wikipedia
too, especially when the extractors confidence score is low.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(a) Irish Newspaper

Irish newspaper (20)
Newspaper (1559)

Ex. Confidence
Google Rank
Sentence Dis.
Combination

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(b) Performer

Performer (44)
Person (1201)
Actor (8738)
Comedian (106)

Ex. Confidence
Google Rank
Sentence Dis.
Combination

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(c) Baseball Stadium

Baseball stadium (163)
Stadium (1642)

Ex. Confidence
Google Rank
Sentence Dis.
Combination

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
Pr

ec
isi

on

(d) Writer

Writer (2213)
Person (1201)
Sci−fi writer (36)

Ex. Confidence
Google rank
Sentence Distance
Combination

Figure 6: When applying Kylin to Web pages, the CRF’s confidence is a poor choice for scoring extractions of the same attribute.
Giving priority to extractions from pages ranked higher by Google, and resolving ties by extractor confidence, improvesresults con-
siderably. ‘Sentence Dis’ which gives priority to extractions from sentences which are closer to the next occurrence ofthe Wikipedia
article title on a web page, improves further, and is only outperformed by a weighted combination of the other three factors.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(b) Performer

Performer (44)
Person (1201)
Actor (8738)
Comedian (106)

Baseline
Shrinkage
Shrink−retrain

Figure 7: When applying Kylin to Web pages, improvements
due to shrinkage and retraining become even more apparent.

A straight-forward combination of the extractors always returns
the extraction with highest score, as measured in terms of confi-
dence for extractions from Wikipedia and the weighted combina-
tion scoreweb for extractions from the Web. In order to balance the
weights of extractors, we adjust the score of extractions from the
web to1 − (1 − scoreweb)

λ, whereλ is a new parameter.

5.1 Web Experiments
In this section we would like to answer two questions: 1) Which

factors are important in scoring extractions from the Web? and
2) When combining extractions from Wikipedia and the Web, can
recall be significantly improved at an acceptable precision?

In previous sections, we computed recall as the proportion of
facts contained in the infoboxes that our system was able to auto-
matically extract from the text. In this section, however, we are

also interested in how many new facts Kylin can extract from the
Web, and so we change our definition of recall: we assume that
there exists some correct value for each attribute contained in the
infobox template of an article and set recall to be the proportion of
correct attribute values relative to all attributes. Note that this is a
very conservative estimate, since there may not always exist an ap-
propriate value. For example, there exists no death date fora writer
who has not died yet.

For all experiments, we queried Google for the top-100 pages
containing the article title, and the top-10 pages containing the ar-
ticle title plus attribute name (or associated predicate).Each new
extraction — for which no ground truth existed in Wikipedia —
was manually verified for correctness by visiting the sourcepage.

In our first series of experiments, we used Shrink-Retrain —
the best extractors trained on Wikipedia — and applied different
scoring functions to select the best extraction for an attribute. Fig-
ure 6 shows our results: The CRF extractor’s reported confidence
performed poorly in isolation. Giving priority to extractions from
pages at a higher position in Google’s returned result listsand re-
solving ties by confidence, yielded a substantial improvement. Sim-
ilarly, we tried giving priority to extractions which were fewer sen-
tences apart from the occurrence of the Wikipedia article title on a
page, again resolving ties by extractor confidence. The large im-
provements in precision and recall (as highlighted in the figure 6)
show that much of the returned text is irrelevant, but can be re-
weighted using simple heuristics. Finally, we were interested if a
weighted combination of these factors would lead to synergies. We
setαs = .1, αr = .7, αc = .9, so that each factor was roughly
weighted by our observed improvement (results were not sensitive
to minor variations). On all datasets, performance was comparable
or better than the best factor taken in isolation.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(a) Irish Newspaper

Irish newspaper (20)
Newspaper (1559)

Baseline
Shrink−retrain
Shrink−retrain−Web

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(b) Performer

Performer (44)
Person (1201)
Actor (8738)
Comedian (106)

Baseline
Shrink−retrain
Shrink−retrain−Web

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(c) Baseball Stadium

Baseball stadium (163)
Stadium (1642)

Baseline
Shrink−retrain
Shrink−retrain−Web

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall
Pr

ec
isi

on

(d) Writer

Writer (2213)
Person (1201)
Sci−fi writer (36)

Baseline
Shrink−retrain
Shrink−retrain−Web

Figure 8: Combining Kylin’s extractions from Wikipedia and the Web yields a substantial improvement in recall without compro-
mising precision. Already, shrink-retrain improved recall over the original Kylin system, here the baseline, but the combination of
extractions from Wikipedia and the Web, shrink-retrain-Web, performs even better.

AUC improved(%) +Shrink +Retrain +Web Total
Irish news.(20) 1386 294 552 2232
Performer(44) 57 17 24 98

Baseball stad.(163) 17 23 62 102
Writer(2213) 7 9 80 96

Table 2: Accumulative AUC improvements.

In our second series of experiments, we combined extractions
from Wikipedia and the Web. In both cases, we applied the Shrink-
Retrain extractor, but scored extractions from the Web using the
weighted factor combination withλ = .4. The results, shown in
Figure 8, show large improvements in recall at higher precision for
the “Baseball stadium” (34%) and “Writer” (63%) datasets, and
at moderately improved precision for the “Irish newspaper”and
“Performer” datasets. The AUC was substantially expanded in all
cases, ranging from 14% to 75%. Compared to the original base-
line system, the area has expanded between 96% and 2232%. Ta-
ble 2 shows the detailed accumulative improvements of AUC for
various scenarios. Another interesting observation is that Shrink-
age tends to address more the first long-tailed challenge — sparse
classes(e.g., “Irish newspaper(20)”), and resorting to the Web tends
to address more the second long-tailed challenge — short articles(e.g.,
many “Writer” articles are short ones about noteless writers).

In the future, we would like to automatically optimize the param-
etersαs, αr, αc, λ based on comparing the extractions with values
in existing infoboxes.

6. RELATED WORK
In the preceding sections we have discussed how our work re-

lates to past work on shrinkage and cotraining. In this section, we
discuss the broader context of previous work on unsupervised in-

formation extraction, approaches for exploiting ontologies in infor-
mation extraction, and other Wikipedia-based systems.

UNSUPERVISED INFORMATION EXTRACTION: Since the
Web is large and highly heterogeneous, unsupervised and self-super-
vised learning is necessary for scaling. Several systems ofthis form
have been proposed. SNOWBALL [1] iteratively generates extrac-
tion patterns based on occurrences of known tuples in documents to
extract new tuples from plain texts.MULDER [12] and AskMSR [5,
9] use the Web to answer questions, exploiting the fact that most
important facts are stated multiple times in different ways, which
licenses the use of simple syntactic processing. Instead ofutilizing
redundancy, Kylin exploits Wikipedia’s unique structure and the
presence of user-tagged data to train machine learners. Patwardhan
and Riloff proposed a decoupled information extraction system by
first creating a self-trained relevant sentence classifier to identify
relevant regions, and using a semantic affinity measure to automat-
ically learn domain-relevant extraction patterns [20]. Kylin uses the
similar idea of decoupling when applying extractors to the general
Web. Differently, Kylin uses IR-based techniques to selectrelevant
sentences and trains a CRF model for extractions.

ONTOLOGY-DRIVEN INFORMATION EXTRACTION: There
have been a lot of work on leveraging ontology for information ex-
traction. The SemTag and Seeker [8] systems perform automated
semantic tagging of large corpora. They use the TAP knowledge
base [22] as the standard ontology, and match it with instances
on the Web. PANKOW [6] queries Google with ontology-based
Hearst patterns to annotate named entities in documents. Matuszek
et al. uses Cyc to specify Web searches to identify and verifycom-
mon senses candidates [15]. The similar idea is utilized in On-
toSyphon [17] where ontology combined with search engines are
used to identify semantic instances and relations. In contrast, Kylin

automatically constructs the Wikipedia infobox ontology and uses
it to help training CRF extractors by shrinkage.

OTHER WIKIPEDIA-BASED SYSTEMS: Dakka and Cucerzan
trained a classifier to label Wikipedia pages with standard named
entity tags [7]. Auer and Lehmann developed the DBpedia [2] sys-
tem which extracts information from existing infoboxes within arti-
cles and encapsulate them in a semantic form for query. In contrast,
Kylin populates infoboxes withnewattribute values. Suchanek et
al. implement the YAGO system [25] which extends WordNet us-
ing facts extracted from Wikipedia’s category tags. But in contrast
to Kylin, which can learn to extract values foranyattribute, YAGO

only extracts values for a limited number of predefined relations.

7. CONCLUSION
Kylin has demonstrated the ability to perform self-supervised in-

formation extraction from Wikipedia [26]. While Kylin achieved
high precision and reasonable recall when infobox classes had a
large number of instances, most classes sit on the long tail of few
instances. For example,82% classes can provide fewer than 100
training examples, and for these classes Kylin’s performance is un-
acceptable. Furthermore, even when Kylin does learn an effective
extractor there are many cases where Wikipedia’s article ona topic
is too short to hold much-needed information.

This paper describes three powerful methods for increasingre-
call w.r.t. the above to long-tailed challenges: shrinkage, retrain-
ing, and supplementing Wikipedia extractions with those from the
Web. Our experiments show that each of these methods is effective
individually. Particularly, shrinkage addresses more thefirst long-
tailed challenge of sparse classes, and the latter two address more
the second long-tailed challenge of short articles. We evaluate de-
sign tradeoffs within each method. Most importantly, we show that
in concert, these methods constitute a huge improvement to Kylin’s
performance (Figure 8):

• Precision is modestly improved in most classes, with larger
gains if sparsity is extreme (e.g., “Irish newspaper”).

• Recall sees extraordinary improvement with gains from5.8%
to 50.8% (a factor of 8.8) in extremely sparse classes such as
“Irish newspaper.” Even though the “Writer” class is pop-
ulated with over 2000 infoboxes, its recall improves from
18.1% to 32.5% (a factor of 1.8) at equivalent levels of pre-
cision.

• Calculating the area under the precision / recall curve also
demonstrates substantial improvement, with an improvement
factor of 23.3, 1.98, 2.02, and 1.96 for “Irish newspaper,”
“Performer,” “Baseball stadium,” and “Writer,” respectively.

Despite this success, much remains to be done. We hope to de-
vise a better weighting scheme for shrinkage by comparing the KL
divergence between the target and mapped classes. We wish to
extend our retraining technique to full cotraining. There are sev-
eral ways to better integrate extraction of Web content withthat
of Wikipedia, ranging from improved Google querying policies to
DIRT-style analysis of extraction patterns [14].

8. ACKNOWLEDGEMENTS
We thank Eytan Adar, Michelle Banko, Ivan Beschastnikh, Doug

Downey, Oren Etzioni, Travis Kriplean, Cynthia Matuszek, David
McDonald, Alan Ritter, Stefan Schoenmackers, Jue Wang, theUW
KnowItAll and Wikipedia groups, and the anonymous reviewers for
valuable conversations and suggestions. This work was supported
by NSF grant IIS-0307906, ONR grant N00014-06-1-0147, SRI
CALO grant 03-000225 and the WRF / TJ Cable Professorship.

REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: Extracting relations from

large plain-text collections. InProceedings of the Fifth ACM
International Conference on Digital Libraries, 2000.

[2] S. Auer and J. Lehmann. What have Innsbruck and Leipzig in
common? Extracting semantics from wiki content. InProceedings of
ESWC07, 2007.

[3] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and
O. Etzioni. Open information extraction from the Web. In
Proceedings of IJCAI07, 2007.

[4] A. Blum and T. Mitchell. Combining Labeled and UnlabeledData
with Co-Training. InProceedings of COLT98, 1998.

[5] E. Brill, S. Dumais, and M. Banko. An analysis of the AskMSR
question-answering system. InProceedings of EMNLP02, 2002.

[6] P. Cimiano, G. Ladwig, and S. Staab. Gimme’ the context:
Context-driven automatic semantic annotation with c-pankow. In
Proceedings of WWW05, 2005.

[7] W. Dakka and S. Cucerzan. Augmenting wikipedia with named
entity tags. InProceedings of IJCNLP 2008, 2008.

[8] S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran,
T. Kanungo, S. Rajagopalan, A. Tomkins, J. Tomlin, and J. Y. Zien.
Semtag and Seeker: bootstrapping the Semantic Web via automated
semantic annotation. InProceedings of WWW03, 2003.

[9] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng. Web question
answering: Is more always better? InProceedings of SIGIR02, 2002.

[10] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu,T. Shaked,
S. Soderland, D. Weld, and A. Yates. Unsupervised named-entity
extraction from the Web: An experimental study.Artificial
Intelligence, 165(1):91–134, 2005.

[11] J. Giles. Internet encyclopaedias go head to head.Nature,
438:900–901, December 2005.

[12] C. T. Kwok, O. Etzioni, and D. Weld. Scaling question answering to
the Web.ACM (TOIS), 19(3):242–262, 2001.

[13] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequencedata. In
Proceedings of ICML01, 2001.

[14] D. Lin and P. Pantel. DIRT– discovery of inference rulesfrom text. In
Proceedings of KDD01, 2001.

[15] C. Matuszek, M. Witbrock, R. Kahlert, J. Cabral, D. Schneider,
P. Shah, and D. Lenat. Searching for common sense: Populating Cyc
from the Web. InProceedings of AAAI05, 2005.

[16] A. McCallum, R. Rosenfeld, T. M. Mitchell, and A. Y. Ng.
Improving text classification by shrinkage in a hierarchy ofclasses.
In Proceedings of ICML98, 1998.

[17] L. K. McDowell and M. Cafarella. Ontology-driven information
extraction with ontosyphon. InProceedings of ISWC06, 2006.

[18] K. Nigam, J. Lafferty, and A. McCallum. Using maximum entropy
for text classification. InProceedings of Workshop on Machine
Learning for Information Filtering, IJCAI99, 1999.

[19] D. Opitz and R. Maclin. Popular ensemble methods: An empirical
study.Journal of Artificial Intelligence Research, pages 169–198,
1999.

[20] S. Patwardhan and E. Riloff. Effective information extraction with
semantic affinity patterns and relevant regions. InProceedings of
EMNLP07, 2007.

[21] M. Richardson and P. Domingos. Markov logic networks. In Machine
Learning, pages 107–136, 2006.

[22] E. Riloff and J. Shepherd. A corpus-based approach for building
semantic lexicons. InProceedings of EMNLP97, 1997.

[23] R. Snow, D. Jurafsky, and A. Ng. Semantic taxonomy induction from
heterogenous evidence. InProceedings of ACL06, 2006.

[24] C. Stein. Inadmissibility of the usual estimator for the mean of a
multivariate normal distribution. InProceedings of the 3rd Berkeley
Symposium on Mathematical Statistics and Probability), 2002.

[25] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core of
semantic knowledge - unifying WordNet and Wikipedia. In
Proceedings of WWW07, 2007.

[26] F. Wu and D. Weld. Autonomously semantifying Wikipedia. In
Proceedings CIKM07, 2007.

[27] F. Wu and D. Weld. Automatically refining the wikipedia infobox
ontology. InProceedings of WWW08, 2008.

