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Abstract

Users of a mobile phone are often required to adapt its alarm type to con-
text. While ringing tones may be obtrusive during meetings, a vibration
alarm is barely noticeable on a bus. We propose setting the alarm type
automatically, based on context-information obtained from a variety of low-
cost sensors. Our multi-sensor board captures audio, acceleration, compass
readings, temperature, humidity, barometric pressure, and ambient light.
Based on raw sensor data, we build five soft sensors representing context
properties that are relevant for setting a suitable alarm type. In particular,
we determine if the user keeps the phone close to the body, is involved in a
conversation, is exposed to high background noise, is outdoors, or is physi-
cally active. Although a decision for the alarm type can be made based on
the context detected, users generally have different preferences as to what
alarm type to use in a given context. We therefore propose learning user
preferences through reinforcement, by associating reactions like taking or
hanging up an incoming call with rewards and punishments. Our experi-
mental results show that we can accurately detect context, and that context
and user preference learning can execute in real-time on an off-the-shelf
mobile device.
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Chapter 1

Introduction

Users of mobile phones generally prefer different alarm types for different
situations. For example, while attending a meeting, studying in a library,
or visiting a movie theater, a user may choose to redirect incoming calls
to a voice mailbox or be notified by vibration rather than an obtrusive
ringing tone. In contrast, when the user is walking on a busy street with
high background noise, she may prefer a loud ringing tone that she is able to
hear. If her cell phone is located close to the body and she is not walking fast,
vibration could be an option, too. However, she won’t be able to notice the
vibration alarm, when she is running. Although currently available mobile
phones are equipped with a variety of alarm types, users are required to
switch the alarm setting manually. Having to remember to continuously
adapt the alarm setting to different contexts imposes a cognitive load on
users. Furthermore, forgetting to adjust the alarm type can be disturbing,
such as an interruption by a loud ringing tone in the middle of a meeting.
In our work, we attempt to create a context-aware mobile phone, Zhiphone,
which adjusts the alarm type automatically based on information about the
user’s activity or her environment. Although context-aware mobile phones
have been proposed in research already, to the best of our knowledge, no
phone on the market at the time of writing follows this approach.

We believe that one reason why context-aware mobile phones have not
appeared on the market, is that due to the diversity of users the one-size-fits-
all approach to adapting the alarm type to context fails. Users generally
have different preferences as how to be notified of an incoming call in a
given situation. For example, some users like using their phones on a bus,
while others prefer more privacy. We propose to learn these user preferences
through reinforcement, by observing a user’s reaction to an incoming call.
For example, if a user hangs up without taking the call, we infer that the
selected alarm type may have been inappropriate in this situation.

Our objective in this work is to show that we can accurately detect rele-
vant context properties, and that we can learn context and user preferences
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Figure 1.1: User interface of the Zhiphone application. The back-
ground color of the five boxes in the upper right corner show current outputs
of the soft sensors. To their right, a box informs the user about incoming
calls. A user can respond to an incoming call by clicking on either the pick
up or hang up button. The generated training example for the reinforcement
learner is displayed in the console at the bottom.

on a mobile device in real-time.

At the hardware side, we use an off-the-shelf HP iPAQ 4700 handheld
device to simulate a mobile phone. It is connected via USB to a custom-
built multi-sensor board that includes 7 sensors and an Atmel ATMega 1281
microprocessor running at 7.3728MHz. The available sensors are shown in
table C.1. For a more detailed description, refer to appendix C.

Based on raw data provided by the sensors, we created five soft sensors
that describe properties about a user’s activity and her current environment.
In particular, we determine if her phone is located close to her body, she
is involved in a conversation, she is exposed to loud background noise, she
is outdoors, or she is physically active. We track this context information
in real-time on the iPAQ and and output the system’s believed state on
the screen, as shown in figure 1.1. A background thread simulates phone
calls at random time intervals and causes alarms. When an incoming call
is received, the user can click on either the pick up or the hang up button.
Based on the user’s choice and the current setting of the soft sensors, a new
training example for the reinforcement learner is generated and displayed
on the screen.

In the next chapter, we discuss related work. In chapter 3, we explain
our approach in detail. Experimental results are shown in chapter 4. Finally,
chapter 5 gives a brief conclusion and discusses the direction of our future
work.



Chapter 2

Related Work

In a work that is most closely related to ours, Siewiorek et. al. [8] propose
Sensay, a context-aware mobile phone. Sensay’s architecture is based on
five functional components: the sensor box, the sensor module, the decision
module, the action module, and the phone module. The sensor box collects
sensor data, the software-based sensor module queries that data, the decision
module determines the phone’s state, the action module sets that state and
the phone module provides access to the mobile phone operating system
and user interface. From the raw sensor data, a series of threshold analysis
tests are run and in consequence the user’s state is determined. SenSay
introduces four states: uninterruptible, idle, active and normal. Sensay
applies only basic learning techniques to distinguish context. Moreover,
there is no learning from user preferences.

Horvitz et.al. [5] propose Bayesphone, a system that applies offline learn-
ing and reasoning with user models to predict whether users will attend
meetings on their calendar and the cost of being interrupted by incoming
calls should a meeting be attended. While the models are precomputed
offline, the inferred policies can be cached on a mobile phone.

Horvitz et.al. [4, 3] have also studied a computer user’s interruptability
from computer activity or contextual information. As features they consider
a user’s current and recent history of computer activity, meeting status, lo-
cation, time of day, and whether a conversation is detected. In a training
phase, users are intermittently asked to assess their perceived interruptabil-
ity.

Fogarty et.al. [1] study the interruptability of programmers. As features
they use low-level event logs in a development environment. Instead of using
manually labeled training data, they measure the response time of users to
interruptions.



Chapter 3

Architecture

3.1 Overview

Figure 3.1 depicts the overall architecture of our system. It consists of three
main components: the feature extraction module, the supervised learning
module, and the reinforcement learning module. The feature extraction
module collects raw sensor data from the multi-sensor board and extracts
features like frequency components or variance. The supervised learning
module uses the pre-processed features and computes the outputs of our
five soft sensors. It should be noted that supervised learning does not take
place on the iPAQ - it is performed offline using annotated user traces,
and only the learned classifiers are used on the iPAQ. The outputs of the
soft sensors combined with a user reaction to an incoming call is used as
an input to the reinforcement learning module. It maintains a knowledge
representation of user preferences and decides about the alarm type.

ringing tone vibration alarm types
*

Learning user preferences
Reinforcement Learning ‘

f f t f f

close tobody  conversation  extr. noise outdoor physical act. Soft sensors
| | | |

Learning context —

Supervised Learning

t t f t

FFT, variance; variance, derivative; features
| | |

Feature Extraction

raw sensor data

Figure 3.1: Architecture overview showing data flows and modules.



Our architectural overview shows data flowing from the multi-sensor
board via feature extraction and soft sensor classification up to the rein-
forcement learner which finally sets the alarm type. To better explain our
motivation for various design decisions, however, we decided to present the
three components of our system in reverse order.

3.2 Learning User Preferences

Today’s mobile phones are already equipped with a variety of alarm types,
which can be customized by the user. While some people prefer loud ringing
tones, others prefer more subtle and less obtrusive ones. Almost all phones
on the market support vibration as an alarm type, and some phones even
support notifying the user by flashy lights. Instead of setting an alarm type,
a user may also configure a voice mailbox that takes every call directly, or a
user may set up call forwarding to another line. There are a wide variety of
options available how mobile phones can react to user calls, but since alarm
or other reaction types are not the focus of our research, we decided to focus
on two basic ones instead.

Ringing Tone We assume a ringing tone that is well audible in loud
environments like public transportation systems or restaurants. The tone
should not be annoying, but its volume should be inappropriate in libraries,
movie theaters, or meetings.

Vibration The vibration alarm should be noticeable when the phone is
being carried around close to the body, e.g. in a pocket, and the user is not
involved in physical activities. It should only make a small amount of noise
such that it can be used in quiet environments like libraries.

With these defined alarm types in mind, we empirically searched for sit-
uations for which we could specify a clear preference for one alarm type
over the other. The situations we identified, as well as our personal alarm
preferences are shown in table 3.1.

Our first observation is that there exist several situations, in which the
two subject’s preferred alarm settings are not the same. Raphael gener-
ally prefers vibration over ringing tone as long as he is able to notice that,
whereas Michelle generally prefers ringing tone as long as the environment
does not prohibit the use of such. To accommodate for different user pref-
erences, we decided to let the mobile phone automatically adapt to its user
through Reinforcement Learning. In the following section we will give an
introduction to Reinforcement Learning and finally show how we apply the
technique to automatically adapt alarm settings to user preferences.



Situation

Michelle

Raphael

User is involved in a conversation

User is physically active, e.g. on a treadmill
User puts phone on desk

User leaves phone in jacket and puts jacket away
User rides bus

User walks outdoors

User is in library

User is studying in silent office environment
User listens to loud music, e.g. in disco

ringing tone
ringing tone
ringing tone
ringing tone
ringing tone
ringing tone
vibration
vibration
ringing tone

vibration
ringing tone
ringing tone
ringing tone
vibration
vibration
vibration
vibration
ringing tone

Table 3.1: Preferred alarm types for two subjects in various situa-
tions.

3.2.1 Reinforcement Learning

Reinforcement Learning [6, 7] is a way of programming an agent through
reward and punishment. Unlike in a supervised setting, the agent is not
being given examples of what action to take in a given state, but it must
learn through trial-and-error what actions will yield a high long-run measure
of reward.

Let’s put this idea into a more formal setting. Our model consists of
a discrete set of environment states, S, a discrete set of actions, A, and a
set of numeric rewards, R. Let R(s,a) denote the reward received when
in state s and executing action a, and let T'(s,a,s’) give the probability of
reaching state s’ when in state s and executing action a. Our goal is to
learn a policy 7, mapping states to actions, with a high long-run measure
of reward. Typical measures are the h-step finite-horizon model which gives
the expected reward for the next h steps, or the infinite-horizon discounted
model, which geometrically discounts rewards received in the future by a
discount factor . The discount factor implies that immediate rewards have
a higher value than rewards received far in the future. From now on, we
assume an infinite-horizon discounted model.

To solve a Reinforcement Learning problem, one typical approach is to
compute the optimal value of every state V*(s). V*(s) is the expected
infinite discounted sum of reward that the agent gains when it starts in
state s and executes the optimal policy. V*(s) can be obtained by solving
the Bellman equations

V*(s) = max(R(s,a) + 'yZT(s, a,s\V*(s'), VseS.
seS

An agent’s optimal action in state s is then given by the action a that maxi-
mizes the right term of this equation. Unfortunately, the transition function
T is often unknown and thus the equations cannot be solved directly. How-



ever, it can be shown that updates of the form
Q(s,a) = Q(s,a) + a(r + ymax Q(s',d’) — Q(s,a))

approximate a function Q*(s,a) such that V*(s) = max, Q*(s,a). In the
update formula, it is assumed that s’ is sampled from the distribution
T(s,a,s’), and r is sampled with mean R(s,a) and bounded variance, and
the learning rate « is decreased slowly. Q*(s,a) gives the expected dis-
counted reward of taking action a in state s and acting optimally afterwards.

We can update Q(s,a) every time we receive an immediate reward, and
as our next action a we can choose the one that maximizes Q(s,a). Unfortu-
nately, this strategy does not let us learn an optimal policy, because we may
not know about other actions yielding even more reward than the one that
currently maximizes Q(s,a). Therefore, we need to trade-off exploitation
and exploration. We choose a randomized strategy that by default takes the
action with the best estimated expected reward, but with some probability
p, it selects a random action.

3.2.2 Applying Reinforcement Learning

We now discuss how the problem of automatically adapting the alarm type
to user preferences can be cast as a Reinforcement Learning problem.

It is straightforward to define the state and action spaces. As a state
space S we choose a discrete set of tuples (s4,ss), where s, indicates the
current alarm setting and sg is drawn from a set of contextual situations.
This set of contextual situations is a generalization of the situations given in
table 3.1 and will be discussed in the next section. Our action space A only
consists of two actions, switching to ringing tone and switching to vibration
alarm.

The main challenge in defining our problem using the Reinforcement
Learning framework, however, lies in the definition of a system of rewards
and punishments. We need to be able to obtain some feedback from the
user that lets us conclude whether our previous actions were satisfactory.
The approach we chose is based on the immediate reaction of a user to
an incoming call. The reactions of the user and their associated reward or
punishment are shown in table 3.2.

| User reaction || Reward/Punishment |
User takes call small positive reward
User hangs up, without taking call || large negative reward
User does not respond to call small negative reward

Table 3.2: User reaction to a incoming call and its associated reward
or punishment.



An obvious question that now arises is — how do we justify our choice of
reward or punishment for the given situations? If the user takes an incoming
call, we can infer that the user was able to notice the phone’s alarm and that
he is able to take the call. In the second case, the user hangs up without
taking the call. We conclude that the user is not able to take the call,
and the fact that he hangs up indicates to us that the alarm type may be
inappropriate or obtrusive in the given situation. Finally, if a user does not
respond to a call, it may be the case that he was unable to notice the alarm.

Setting the exact reward parameters is, of course, a difficult task. The
parameters affect the behavior of the Reinforcement Learner, whose useful-
ness can only be determined by conducting experiments on real subjects.
Unfortunately, real-world data is expensive to obtain, since all data exam-
ples should be drawn from the same user and it is only possible to obtain
a single training example per phone call. Furthermore, the data is gener-
ally very noisy, since users are often inconsistent in their reaction to phone
calls. For example, they may sometimes have a conversation interrupted by
a phone call and sometimes not. Adjusting the reward parameters of the
Reinforcement Learner can be compared to model selection in a supervised
learning.

To approximate the @) function we use a multi-layer perceptron and
the Backpropagation learning algorithm. The Backpropagation algorithm is
especially suitable for our setting, since every update requires only a constant
and modest execution time and can thus be run in real-time on the iPAQ.

3.3 Learning Context

In section 3.2, and in particular in table 3.1, we presented a variety of
situations that can be used in setting a phone’s alarm. In this section, we
intend to generalize these situations to tuples of high-level context properties
which we can learn in a supervised setting.

We identified five properties that can be used to describe the context.
Our selection of properties was guided by the motivation to distinguish the
aforementioned situations and by the requirement that these properties are
learnable from the sensor data provided by the multi-sensor board.

Close To Body (CB) Determines if the phone is located close to the
body. If it is close to the body, we expect small variations in accelerometer
or compass data.

Conversation (CN) Determines if the user is involved in a conversation.
If the user is involved in a conversation, we expect unique patterns in the
time and frequency domain data of the microphone.



Extreme Noise (EN) Determines if the user is exposed to high noise lev-
els. If exposed to high noise levels, we expect high amplitudes in microphone
data.

Outdoor (OU) Determines if the user is outdoors. If outdoors, we ex-
pect different settings for temperature, humidity, ambient light, background
noise.

Physical Activity (PH) Determines if the user is physically active. If
physically active, we expect large variations in accelerometer data.

Table 3.3 shows our expected matching between the aforementioned situ-
ations and our defined properties.

| Situation || CB | CN | EN | ou | PH |
User is involved in a conversation * T N * *
User is physically active, e.g. on a treadmill * * * * T
User puts phone on desk F * * F *
User leaves phone in jacket and puts it away || F * * * *
User rides bus T * T T F
User walks outdoors T * * T F
User is in library * F F F F
User is studying in silent office environment * F F F F
User listens to loud music, e.g. in disco T * T F *

Table 3.3: Properties of contextual situations. Entries marked with T
or F' indicate that the corresponding properties are present or not present,
respectively. For entries marked with %, the value of the property is irrele-
vant.

In the following sections, we first give an introduction to the supervised
learning framework that we employed, and afterwards show how it is applied
to learn our set of context properties.

3.3.1 Support Vector Learning

In its simplest form, the Support Vector Machine [10] is a linear classification
algorithm. For two linearly separable sets of data in feature space, there
generally exist an infinite number of separating hyperplanes. The Support
Vector Machine, however, yields the unique solution that maximizes the
distance between the closest training points of each class and the separating
hyperplane.

In formal notation, if (x;,v;), 1 < i < m denotes a set of training exam-
ple with y; € {—1,+41}, then our goal is to find the separating hyperplane,
given by the normal vector w and offset from the origin b, that solves the
following optimization problem:

10



minimize lwl?
subject to y; ((w,x;) +0) >1 forall 1 <i<m.

The constraints require all training examples to be classified correctly
and with positive distance from the hyperplane. It can then easily be shown
that it’s optimum the objective function gives the distance between the
closest training points and the hyperplane.

Unfortunately, due to outliers a separating hyperplane may not exist.
Therefore, we need to relax our conditions and allow some training points
to lie too close to the hyperplane or be even misclassified. Rewriting our
optimization problem, we get'

minimize %||W||2 + % S ff
subject to y; ((wW,x;) +b) >1-¢ foralll<i<m
& >0 foralll <i<m.

In this formulation, the slack variables & equal O for examples that are
classified correctly and lie far enough from the hyperplane, otherwise £ equals
the squared error given by (1 — y;((w,x;) + b))2. C is a regularization
parameter that allows to trade off the number of misclassifications and the
smoothness of the solution. The smoothness is relevant when we consider
more complicated solutions than hyperplanes. Support Vector Machines
offer an elegant technique to find nonlinear solutions by the introduction of
kernel functions. It is common to use the Gaussian kernel, in which case
the Support Vector Machine algorithm yields solutions that have round or
twisting shapes.

3.3.2 Applying Support Vector Learning

We train a Support Vector Machine classifier for each of the five context
properties using labeled training data. The features contained in the dataset
are not raw sensor inputs, but features extracted in a preprocessing step that
is discussed in section 3.4. Since the output of the Support Vector Machine
classifiers are used as inputs to higher-level learning algorithms, we will from
now on refer to the classifiers as soft sensors.

One observation is that we do not need to run the Support Vector Ma-
chine algorithm on the iPAQ. We can train the classifiers offline using labeled

"We give the L2-C-SVM formulation introduced by Suykens [9, 2]. It is less commonly
used than the original L1-C-SVM formulation by Vapnik [10], but has been shown to give
similar classification results and is slightly more efficient with our selected optimization
solver.

11



training data and later run the pre-trained classifiers on the iPAQ. The im-
portance of this becomes clear when we consider the fact that the running
time of the Support Vector Machine algorithm is generally unpredictable?.

The running time of the pre-trained classifiers, however, only depends
linearly on the number of used support vectors and this number is upper
bounded by the number of training examples and is fixed.

3.4 Feature Extraction

The raw sensor outputs from the multi-sensor board are generally not suit-
able as an immediate input to a soft sensor classifier. Since the classifiers
only take features from a given point in time as inputs, they are not able to
capture temporal relationships. For example, the actual value of a sensor
reading may be irrelevant to the classification task, but only the fact that
this value has been increasing for a period of time or, say, the fact that it
has been highly variant for some time. The sensor readings may also be very
noisy, which requires us to smooth the signal before using the sensor value.
We identified five feature extractors that are useful in learning our defined
set of soft sensor classifiers.

Running Mean The mean of the sensor readings over a sliding time win-
dow.

Running Variance The variance of the sensor readings over a sliding
time window.

Derivative The difference quotient between two sensor readings.

Exponential Smoothing Weighted sum of previous extracted feature
and new sensor reading.

Fast Fourier Transform The frequeny representation of the sensor read-
ings.

Feature selection was performed manually based on the observed correla-
tion between raw sensor readings and annotations. Figure 3.2 shows eight
raw sensor readings and annotations for a 46-minute recorded trace.

For all but the exponential smoothing extractor, we need to specify the
size of a sliding window. This size, of course, has an impact on the extracted

2To the best of our knowledge, the running times of all commonly used quadratic
programming solvers is highly sensitive to the distribution of the data. Small variations
in the data can have a significant impact on the running time.

12
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Figure 3.2: Annotated user trace with eight raw sensor outputs.
For physical activity annotations, the acceloremeter signal (sum of three ac-
celoremeter readings, one for each direction) shows high variance and also
the amplitude of the audio signal remains highly variant. For outdoor anno-
tations, we see activity in the barometric pressure, barometric temperature,
SHT humidity, and SHT temperature signals. All four sensors are adapt-
ing to the outdoor environment, however, their signal change is very slow.
We conclude that not only their absolute values, but also their derivatives
may be useful features for indoor/outdoor discrimination. For the extreme
noise annotation, we see high amplitudes in the audio signal. For close to
body annotations, we see minor variations in the acceloremeter, compass,
and ambient light signals.

13



features. In our experiments we have found that we would ideally like to
have different window sizes for different sensors. For example, the close to
body sensor is more accurate when the underlying features are computed
on a relatively long sliding window of one minute, since a user may simply
hold still for a couple of seconds. On the other hand, the conversation sen-
sor performs better, if we compute the Fast Fourier Transform on a shorter
window of 10 seconds on the audio signal. This keeps the computational
overhead smaller and well recognizes frequencies that can be typically ob-
served in voice conversations. We therefore use window sizes of 10 second
and 1 minute lengths.

It is also useful to compose several feature extractors. For example, we
may wish to compute the FFT of the audio signal and afterwards smooth
the frequency components over time. Also, the derivative values are only
useful when the underlying signal exhibits enough smoothness. This can be
achieved by first applying a running mean or exponential smoothing filter
before computing the derivative. Since there are a large number of possi-
ble and useful feature extractor compositions, we developed each extractor
as a pluggable component filter, where each filter can have multiple inputs
and multiple outputs. In addition to flexibility in composition, the compo-
nents were developed with regard to efficiency and an economical usage of
buffering.

Since feature extraction must run on the iPAQ in real-time, we require
low and predictable execution times for each feature extractor. All presented
feature extractors require only a constant number of CPU instructions.

14



Chapter 4

Design of Experiments

Our goal in this paper is to show that automatically adapting a mobile
phone’s alarm type to context and user preferences is technically feasible.
In particular, we would like to show that

1. the context can be accurately described by building the proposed soft
sensor classifiers,

2. all components of the system (feature extraction, soft sensor classifica-
tion, and reinforcement learning) can execute on the iPAQ in real-time.

In the following sections, we show these points through experimental evalu-
ation.

4.1 Accuracy of Learning Context

To evaluate the accuracy of our soft sensors we collected two user traces in
and around Paul G. Allen Center, each roughly one hour in length. Each
trace contains several minutes of annotations of each of the five context
properties that our soft sensors should recognize. An overview of the traces
is given in table 4.1.

| || Trace 1 | Trace 2 | Total |

Close To Body 48 min | 31 min | 79 min
Conversation 24 min 5 min 29 min
Extreme Noise 4 min 9 min 13 min
Outdoor 6 min 10 min | 16 min
Physical Activity 5 min 5 min 10 min
Total recorded time || 62 min | 55 min | 117 min

Table 4.1: Durations of annotations and traces collected at the Paul
G. Allen Center. Trace 1 and Trace 2 are each roughly one hour in length
and each contain several minutes of recordings of all five annotations.

15



Using one of the two traces as a training and the other as a test set,
we trained a Support Vector Machine with Gaussian kernel for each of the
annotations. We optimized the algorithm parameters (the regularization
parameter C' and the Gaussian kernel width o) by searching on a regular
grid in the log space of the parameters, and selecting the combination that
yielded the lowest 5-fold cross-validation error on the training set. Table 4.2
shows the average results of choosing Tracel as a training and Trace2 as a
test set, and of choosing Trace2 as a training and Testl as a test set.

| || Precision (in %) | Recall (in %) | Accuracy (in %) |

Close To Body 88.058 87.647 82.799
Conversation 77.879 32.247 81.678
Extreme Noise 81.569 88.547 96.511
Outdoor 68.478 61.204 91.874
Physical Activity 94.309 79.293 97.876
Average 82.059 69.788 90.148

Table 4.2: Precision, Recall, and Accuracy for different Support
Vector Machine classifiers. Each value was computed by 2-fold cross-
validation using the Tracel and Trace2 datasets. Precision is given by (#
true positives) / (# true positives + # false positives), recall is given by (#
true positives) / (# true positives + # false negatives), and the accuracy is
given by (# true positives + # true negatives) / (size of the dataset).

The overall average accuracy was above 90%. We find this number en-
couraging and believe that even higher accuracies can be attained. For
example, we did not perform automatic feature selection, nor did we ignore
training examples at annotation boundaries. Furthermore, it is possible to
interpret the distance of a test example to a classifiers’s decision boundary as
a confidence value in the prediction. Using these confidence values, soft sen-
sor predictions can further be smoothed by Kalman filters or a probabilistic
graphical model.

4.2 Real-time Performance of all Components

In addition to accurately detecting context, we require real-time performance
of feature extraction, soft sensor classification, and reinforcement learning
on the iPAQ. By real-time performance, we mean that a new context can
be recognized within several seconds.

We begin our analysis by measuring the execution times of our feature
extractors on the iPAQ. The results are shown in table 4.3.

Except for the Fast Fourier Transform all feature extractors required far
less than a second of execution time.

The execution times for the soft sensors are given in table 4.4. Except
for the conversation soft sensor, each soft sensor requires well under a second
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Feature Extractor || Time

Mean (window size 20) 0-1 ms
Variance (window size 5500) 15-18 ms
Derivative 0-1 ms
Exponential Smoothing 0-1 ms
Fast Fourier Transform (window size 4096) || 1032-1083 ms
Window (window 5500, w/ overlap) 96-109 ms

Table 4.3: Measured execution times of various feature extractors
on the iPAQ. For each extractor, the number of executed instructions is
identical for every run; running time variations are mainly due to simulta-
neously running threads. The running time of several extractors depends
on the used window size. The sizes we selected in this table are actually
used in our system to obtain 10 seconds or one minute windows with the
multi-sensor board’s sensor sampling rates.

for classification. For comparison, we also include the training times of the
classifiers on a 1.5GHz Pentium-M laptop.

| || Classification | Training |
Close To Body 127 ms 4 sec (£ 2)
Conversation (memory error) | 212 sec (£ 134)
Extreme Noise 74 ms 3 sec (£ 2)
Outdoor 132 ms 4 sec (£ 2)
Physical Activity 12 ms 3 sec (£ 2)
Average > 86 ms 45 sec (£ 28)

Table 4.4: Measured executions of soft sensor classification on the
iPAQ and soft sensor training on a laptop. For training times, the
numbers in brackets indicate standard deviation. The classification times
are deterministic and did not vary significantly on the iPAQ. The memory
error was due to the fact that the Support Vector Machine extracted too
many high-dimensional support vectors that could not all fit into the iPAQs
modest memory. This problem can be solved by reducing the number of
support vectors or by reducing the number of features. The large number
of features was due to computing the FFT on the audio signal.

Finally, we measure the execution times of the Reinforcement Learner.
We use a 3-layer perceptron to represent the Q-function. Every time the
user receives an incoming call, the system queries the perceptron with its
current soft sensor states and one alarm type to see the predicted reward.
The system chooses the alarm type that gives the highest expected reward.
After the user reaction is available, a single training example is generated
and the state of the perceptron is updated using a Backpropagation step.
Table 4.5 shows that both, the prediction and Backpropagation update,
require only a negligible running time.
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| || Prediction | Backpropagation update |

| Multi-layer Perceptron || 0-1 ms | 0-1 ms |

Table 4.5: Measured executions of Reinforcement Learner on the
iPAQ. We represent the Q-function by a 3-layer perceptron with 6 input
nodes, 5 hidden nodes, and 1 output node.

We have therefore shown that all components of our system can execute
on the iPAQ in real-time.
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Chapter 5

Conclusion and Future Work

In this work we have shown that it is technically feasible to automatically
adapt the alarm type of a mobile phone to its context and user preferences.
In particular, we have shown that we can accurately detect relevant context
properties and that all components of the system — feature extraction, soft
sensor classification, and reinforcement learning — can execute on an off-the-
shelf mobile device in real-time.

While our work focused on the technical feasibility of the approach,
more research needs to concentrate on studying real-world experiences of
users with the system. Since this was not one of our goals, we did not
perform comprehensive user studies. However, we believe that at this point
user studies are essential to advancing research in context- and user-aware
mobile phones.

A prerequisite to conducting realistic user evaluations is to equip the
iPAQ with real phone capability. Since the iPAQ is already able to commu-
nicate via 802.11 wireless networks, we would like to use a VoIP library like
JVOIPLIB'to enable making real phone calls.

In combination with user evaluations, it may then be promising to more
carefully explore and evaluate our or alternative Supervised Learning and
Reinforcement Learning strategies. For example, we did not evaluate how
quickly the Reinforcement Learner converges to the real preferences of a user.
This question, however, is essential, especially since multi-layer perceptrons
typically require a large number of Backpropagation updates to approximate
a function. Unfortunately, it is difficult to obtain training data, since we only
get a single training example per incoming call, we can only consider data
collected by one user, and finally the collected data is generally very noisy.

"http://research.edm.luc.ac.be/jori/jvoiplib/jvoiplib.html
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Appendix A

Implementation

We developed our system using the Java Development Kit, version 1.3.1.
Our system uses several freely available libraries:

e Our implementation of the Support Vector Machine algorithm uses
the LibSVM quadratic programming solver!.

e Our reinforcement learner is an adapted version of PIQLE?.

e Our system uses the UWAR libraries to communicate with the multi-
sensor board.

A.1 Acknowledgements

We would like to thank Brian Ferris for his support in setting up real-time
data capture from the multi-sensor board.

"http://www.csie.ntu.edu.tw/~cjlin/libsvm/
*http://www.lifl.fr/~decomite/piqle/piqle.html
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Appendix B

Source Code and
Instructions

B.1 Source Code

The full source code including required com.intel.research.uwar packages can
be downloaded from

http://www.cs.washington.edu/homes/raphaelh/research/cse567.zip.

B.2 Prerequisites
To run Zhiphone you will need
e A HP iPAQ 4700, running Microsoft PocketPC

e A UW Multi-Sensor Board connected to the iPAQ via USB

Microsoft ActiveSync

Eclipse 3.0 or higher

Java Development Kit 1.3 or higher

J9 Java Virtual Machine on the iPAQ

B.3 Installation

Unpack cseb67.zip. Before the Zhiphone application can compile in Eclipse,
one needs to make certain configurations in Eclipse:

1. Create a new Eclipse project for each of the following directories in
cseb67.zip:
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e com.intel.research.uwar.patterns

e com.intel.research.uwar.io

e com.intel.research.uwar. jtracewriter
® cseb67

e org.eclipse.swt

2. For each checked out module open the Properties window and set the
Java compiler to version 1.3 (higher versions are not supported with
the J9 JVM that runs on the iPAQ).

3. For com.intel.research.uwar.patterns, an additional Eclipse library is
required that is not included in the standard version. I've included
that library in the /1ibs directory of the cse567 module. So, for the
com.intel.research.uwar.patterns module, load the properties di-
alog, select the Java Build Path tab, select Libraries, click Add external
Jar, and select the /1ibs/swt. jar file from the cse567 module.

4. Additionally, for each module add certain other modules to the Build
Path. (Open Properties, Java Build Path, Projects tab).

e For com.intel.research.uwar.patterns
add nothing

e For com.intel.research.uwar.io
add com.intel.research.uwar.patterns

e For com.intel.research.uwar. jtracewriter
add com.intel.research.uwar.io

e For cse567
add com.intel.research.uwar.io
add com.intel.research.uwar. jtracewriter

B.4 Running Zhiphone on the iPAQ

To run the application on the iPAQ, do the following steps:

1. Call Eclipse-File-Export.
Select JAR-File.
Select the src directory in each of the above listed modules.
In the last dialog window set the entry point to be the Main class.

2. Save JAR file on desktop, e.g. cseb67.jar.

3. Create a text file on the desktop, containing exactly the following line
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255#\j9\bin\j9.exe "-Xbootclasspath:\j9\lib\classes.zip;
\j9\lib\swt.jar;\j9\lib\charconv.zip" -cp "/My Documents
/cseb67.jar;" "zhiphone.main.Main" ""

4. Copy JAR and text file onto iPAQ using ActiveSync.

5. Rename text file on ipaq to cse567.Ink (one can do that in the active
sync window on the desktop)

6. Run by clicking on cse567.1nk on iPAQ.
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Appendix C

Multi-Sensor Board

The multi-sensor board is built on a 6-layer PCB that includes an Atmel
ATMega 128L microprocessor running at 7.3728MHz. The MSB is equipped
with 7 sensors (listed in Table C.1) which are all controlled by the on-board
microcontroller as shown in Figure C.1. The MSB has two communication
modes: either wired (via a USB or compact flash bridge) or wireless (via
a bluetooth). It can collect data on handheld, desktop computers and cell
phone. The onboard microprocessor controls all the low level I/O operations
necessary to communicate with each sensor. The microprocessor performs
the sampling (either polled or streaming) and then relays the data over a
hi-speed UART (Universal Synchronous and Asynchronous serial Receiver
and Transmitter) to the devices which are connected to receive the serial
data stream.

Audio

High Frequency
Visible Light Sensor

Barometric Pressune /
Temperature Sensor

Relative Humidity /
Tamperature Sensor

Ambient Visible+IR
and IR Light sensor

2-Axis Digital
Compass

3-Axis Digital
Accelerometer

Figure C.1: Layout of sensors on the MSB.
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Manufacturer | Part No. Description Sampling

Rate
Panasonic WM-61A Electric Microphone ~ 16000 Hz
Osram SFH-3410 Visible Light Phototransistor ~ 550 Hz
STMicro LIS3L02DS | 3-Axis Digital Accelerometer ~ 550 Hz
Honeywell HMC6352 2-Axis Digital Compass 30 Hz
Intersema MS5534AP | Digital Barometer / Temperature 15 Hz
TAOS TSL2550 Digital Ambient Light 5 Hz
Sensirion SHT15 Digital Humidity / Temperature 2 Hz

Table C.1: Specifications of sensors on the MSB.
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