
Using Wikipedia to Bootstrap Open Information Extraction

Daniel S. Weld
Computer Science &

Engineering
University of Washington
Seattle, WA-98195, USA

weld@cs.washington.edu

Raphael Hoffmann
Computer Science &

Engineering
University of Washington
Seattle, WA-98195, USA

raphaelh@cs.washington.edu

Fei Wu
Computer Science &

Engineering
University of Washington
Seattle, WA-98195, USA

wufei@cs.washington.edu

1. INTRODUCTION
We often use ‘Data Management’ to refer to the manipu-
lation of relational or semi-structured information, but much
of the world’s data is unstructured, for example the vast amount
of natural-language text on the Web. The ability to manage
the information underlying this unstructured text is therefore
increasingly important. While information retrieval tech-
niques, as embodied in today’s sophisticated search engines,
offer important capabilities, they lack the most important
faculties found in relational databases: 1) queries compris-
ing aggregation, sorting and joins, and 2) structured visual-
ization such as faceted browsing [29].

Information extraction (IE), the process of generating struc-
tured data from unstructured text, has the potential to con-
vert much of the Web to relational form — enabling these
powerful querying and visualization methods. Implemented
systems have used manually-generated extractors (e.g., reg-
ular expressions) to “screen scrape” for decades, but in re-
cent years machine learning methods have transformed IE,
speeding the development of relation-specific extractors and
greatly improving precision and recall. While the technol-
ogy has led to many commercial applications, it requires
identifying target relations ahead of time and the laborious
construction of a labeled training set. As a result, supervised
learning techniques can’t scale to the vast number of rela-
tions discussed on the Web.

1.1 Open Information Extraction
In order to extract the widely-varying type of information on
the Web, attention has recently turned to the broader goal of
what Etzioni et al. call open information extraction [2, 11]
— the task of scalably extracting information to fill an un-
bounded number of relational schemata, whose structure is
unknown in advance. Open IE is distinguished from tradi-
tional methods on three dimensions [11]:
Input: Traditional, supervised approaches require a set of
labeled training data in addition to the corpus for extraction;
open IE uses domain-independent methods instead.
Target Schema: In traditional IE, the target relation is spec-
ified in advance; open IE automatically discovers the rela-
tions of interest.
Computational Complexity: The runtime of traditional meth-
ods isO(D∗R), whereD denotes the number of documents

.

in the corpus and R denotes the number of relations; in con-
trast, scalability to the Web demands that open IE scale lin-
early in D.

1.2 The Challenge
IE techniques are typically measured in terms of precision,
the percentage of extracted items which are correct, and re-
call, the percentage of potentially correct tuples which are
actually extracted. In most cases, there is a tradeoff between
precision and recall (at 0% recall one has 100% precision),
so researchers often look at the recall at some fixed precision
(determined by task needs) or the area under the precision /
recall (P/R) curve.

While several successful systems have tackled open IE [2,
27, 1, 5, 23], demonstrating respectable performance, they
face a harder problem than traditional supervised methods.
Specifically, the tradeoff between precision and recall is fur-
ther opposed by the need for generality in the type of text
accepted and the range of relations considered. The goal of
fully open IE, eschewing manual tuning or the tedious con-
struction of training sets, represents the extreme point on the
generality spectrum. The challenge for the future, then, is to
improve all three dimensions: precision, recall and general-
ity. How far is it possible to go?

The remainder of this paper presents Kylin as a case study
of open IE. We start by describing Kylin’s use of Wikipedia
to power the self-supervised training of information extrac-
tors. Then, in Section 3 we show how Wikipedia training
can be seen as a bootstrapping method enabling extraction
from the wider set of general Web pages. Not even the
best machine-learning algorithms have production-level pre-
cision; Section 4 discusses how users — engaged in some
other primary task — may be unobtrusively enticed to vali-
date extractions, enlarging the training set, and thus improv-
ing accuracy over time. Section 5 concludes with observa-
tions gleaned from our experience with Kylin. Finally, Sec-
tion 6 concludes by revisiting the challenges listed above.

2. SELF-SUPERVISED LEARNING
As we have said, information extraction is a process which

generates a set of relational tuples by “reading” unstructured
text. For example, the simplest case of IE, called named-
entity recognition, extracts tuples of a unary relation, e.g.,
company(IBM) from natural-language sentences. Super-
vised learning of extractors operates in two phases:

Training: Typically a large training corpus is cleaned and



Figure 1: Rendered form of a portion (8 of 18 attributes)
of the infobox for the University of Washington.

converted to a sequence of words,
⇀
w. Each word is marked

(e.g., by a human) to show which words correspond to com-
panies, thus providing a training set. One basic strategy is
then to train a sequential probabilistic model, such as an
HMM, deriving the parameters θ which maximize P [

⇀
w|θ]

by simply counting inter-state transitions and word-emissions
per state. It is also possible to make use of unlabeled data by
using the greedy Baum-Welch algorithm.

Extraction: Given a trained HMM with parameters, θ, and
a sequence of test words, e.g.,

⇀
w= “Today Amazon released

its quarterly earnings," IE uses the dynamic-programming
Viterbi algorithm to find the most likely state sequence π,
i.e. the π that maximizes P [

⇀
w, π|θ]. Any words predicted

to have been emitted from the HMM’s “company” state are
returned as tuples, e.g., company(Amazon).

But how can machine learning be used in the case of open
IE? One method, incorporated into the TextRunner system [2,
1], learns patterns which indicate general relationships and
extracts the relation as well as the arguments. We advo-
cate an alternative approach: using Wikipedia to generate
relation-specific training data for a broad set of thousands of
relations.

2.1 Heuristic Generation of Training Data
There are many reasons why Wikipedia is an excellent

corpus for training an open IE system. First, it is a com-
prehensive source of high-quality text about a very wide va-
riety of topics. Secondly, it has a great deal of internal struc-
ture which can be exploited for learning [27]. In this paper,
we restrict our attention to infoboxes, tabular summaries of
an article’s salient details which are included on a number
of Wikipedia pages. For example, Figure 1 shows the in-
fobox from the page on the University of Washington. Since
this table is generated via stylesheet from XML source, it
is relatively easy to process. When a page has such an in-
fobox one can determine the class of the infobox (e.g., the
University class). By aggregating the source code for a
number of instances of an infobox class, one may deduce the
most important attributes of the class; these correspond to
relations whose first argument is an instance of the class. In
our example, we have the year established, the provost
and sixteen others.

Schema
Refiner

Training Data
Constructor

Document
Classifier

Sentence
Classifier

CRF Model

Infoboxes

Preprocessor

Classifier

Extractor

Wikipedia

Figure 2: Architecture of Kylin’s basic, self-supervised
open information extraction system, before shrinkage is
applied.

Kylin uses infoboxes to capture the schemata of the most
important relations for summarizing the contents of Wikipedia
articles. The main problem we address is how to populate
those schemata from data extracted from the natural lan-
guage text of articles without infoboxes. Kylin uses existing
infoboxes for this second task as well, creating training sets
for learning extractors for those relations [27]. The overall
architecture of Kylin is shown in Figure 2; we discuss the
main components below.

Preprocessor: The preprocessor selects and refines infobox-
class schemata, choosing relevant relations; it then generates
machine-learning datasets for training sentence classifiers
and extractors. Refinement is necessary for several reasons.
For example, schema drift occurs when authors create an in-
fobox by copying one from a similar article and changing at-
tribute values. If a new attribute is needed, they just make up
a name, leading to schema and attribute duplication. Since
this is a widespread problem, schema refinement clusters in-
fobox classes which have similar schemata and names with
low edit distance. Rare attributes are ignored.

Next, the preprocessor heuristically constructs two types
of training datasets — those for sentence classifiers, and for
CRF relation extractors. For each article with an infobox
mentioning one or more target relations, Kylin tries to find
a unique sentence in the article that mentions that attribute’s
value. The resulting labeled sentences form positive training
examples for each relation; other sentences form negative
training examples. If the attribute value is mentioned in sev-
eral sentences, then one is selected heuristically.

Generating Classifiers: Kylin learns two types of classi-
fiers. For each class of article being processed, a heuristic
document classifier is used to recognize members of the in-
fobox class. For each target relation within a class a sentence
classifier is trained in order to predict whether a given sen-
tence is likely to contain the attribute’s value. For this, Kylin
uses a maximum entropy model [17] with bagging. Features
include a bag of words, augmented with part of speech tags.

Learning Extractors: Extracting attribute values from a
sentence is best viewed as a sequential data-labeling prob-
lem. Kylin uses conditional random fields (CRFs) [15] with
a wide variety of features (e.g., POS tags, position in the
sentence, capitalization, presence of digits or special charac-
ters, relation to anchor text, etc.). Instead of training a single



Wikipedia

WordNet

Subsumption Detection

Schema Cleaning

Schema Mapping

?

?
?

is-ais-a

Markov Logic Joint Inference

Figure 3: Architecture of Kylin Ontology Generator.

master extractor to clip all relations, Kylin trains a different
CRF extractor for each relation, ensuring simplicity and fast
retraining. This decomposition also enables easy paralleliza-
tion for computational scalability.

2.2 Improving Recall with Shrinkage
Although Kylin performs well when it can find enough

training data, it flounders on sparsely populated infobox classes
— the majority of cases. Fortunately, there is a way to im-
prove Kylin’s performance through the use of shrinkage, a
general statistical technique for improving estimators in the
case of limited training data. McCallum et al. applied this
technique for text classification in a hierarchy of classes by
smoothing parameter estimates of a data-sparse child with
its parent to get more robust estimates [16].

Similarly, we use shrinkage when training an extractor of
an instance-sparse infobox class by aggregating data from its
parent and child classes. For example, knowing that Per-
former IS-A Person, and Performer.loc=Per-
son.birth_plc, we can use values from Person.
birth_plc to help train an extractor for Performer.loc.
The trick is finding a good subsumption hierarchy which re-
lates attributes between parent and child classes. Unfortu-
nately, Wikipedia does not contain such a taxonomy1 Fur-
thermore, previously-created taxonomies for Wikipedia, e.g.
[18], don’t contain the required relation-relation mappings
between parent-child classes. Thus, we were led to devise
our own taxonomy, which we did using a novel, autonomous
process described below. After explaining the construction
of this taxonomy, we describe our approach to shrinkage.

The Kylin Ontology Generator: The Kylin Ontology Gen-
erator (KOG) is an autonomous system that builds a rich tax-
onomy by combining Wikipedia infobox classes with Word-
1Wikipedia’s category system is not directly useful in this regard,
for several reasons. First, the category system is too flat. Second,
there are many administrative tags mixed into the categories. Third,
the “content-bearing” tags are typically conjunctive, e.g. Jewish
physicist, which require significant processing to decompose
into an orthogonal taxonomy.

Net using statistical-relational machine learning [28]. At
the highest level KOG computes six different kinds of fea-
tures, some metric and some Boolean: similarity measures,
edit history patterns, class-name string inclusion, category
tags, Hearst patterns, search-engine statistics, and WordNet
mappings. These features are combined using statistical-
relational machine learning, specifically joint inference over
Markov logic networks [20], extending [21].

Figure 3 shows the architecture of KOG. First, its schema
cleaner scans the infobox system to merge duplicate classes
and relations, and infers the type signature of each relation.
Then, the subsumption detector identifies the subsumption
relations between infobox classes, and maps the classes to
WordNet nodes. Finally, the schema mapper builds rela-
tion mappings between related classes, especially between
parent-child pairs in the subsumption hierarchy [28].

KOG’s taxonomy provides an ideal base for the shrinkage
technique, as described below.

Shrinkage Using the KOG Ontology: Given a sparse tar-
get infobox class C, Kylin’s shrinkage module searches up-
wards and downwards through the KOG taxonomy to ag-
gregate training data from parent and children classes. The
overall shrinkage procedure is as follows:

1. Given a class C, query KOG to collect the related class
set: SC = {Ci|path(C,Ci) ≤ l}, where l is the pre-
set threshold for path length. Currently Kylin only
searches strict parent/child paths without considering
siblings. Take the Performer class as an example:
its parent Person and children Actor and Comedian
could be included in SC .

2. For each relation C.r (e.g., Performer.loc) of C:

(a) Query KOG for the mapped relation Ci.rj (e.g.,
Person.birth_plc) for each Ci.

(b) Assign weight wij to the training examples from
Ci.rj and add them to the training dataset forC.r.
Note that wij may be a function both of the tar-
get relation C.r, the related class Ci, and Ci’s
mapped relation Ci.rj .

3. Train the CRF extractors for C on the new training set.

With shrinkage, Kylin learns much better extractors, es-
pecially in classes with only a few instances containing in-
foboxes. For example, the area under the precision and recall
curve for the performer class (which had 44 instances)
improved by 57% after applying shrinkage from person
(1201 examples), actor (8738 examples) and comedian
(106 examples) [26]. Most of this improvement comes from
increased recall, but precision gets a small boost as well.

3. BOOTSTRAPPING TO THE WEB
Even when Kylin does learn an effective extractor there

are numerous cases where Wikipedia has an article on a
topic, but the article simply doesn’t have much information
to be extracted. Indeed, a long-tailed distribution governs
the length of articles in Wikipedia — around 44% of articles
are marked as stub pages — indicating that much-needed



information is missing. Additionally, facts that are stated us-
ing uncommon or ambiguous sentence structures also hide
from the extractors. This section shows how to extend the
previously-described methods to support extraction from the
broader Web.

The challenge for this approach — as one might expect
— is maintaining high precision and recall. Since Kylin’s
extractors have been trained on the somewhat idiosyncratic
Wikipedia corpus, they may not extend smoothly to the Web.
After considering the roots of the problem, we discuss the
extensions necessary to successfully bootstrap.

• Reduced Recall When Extracting from the Web: In
many cases, the language used on Wikipedia is styl-
ized and looks very different from pages on the gen-
eral Web. For example, on Wikipedia a person’s date of
birth and his professions are often expressed in the first
sentence, which begins with the person’s name, then
contains the birth date in parentheses, then the verb is,
and finally a list of professions. When trained on such
data, an extractor fails to extract from sentences of dif-
ferent style. For example, the extractor might not be
able to extract a person’s birthdate from the sentence
“Obama was born on August 4, 1961.”

• Reduced Precision When Extracting from the Web:
Extractors trained on Wikipedia pages are often unable
to discriminate irrelevant information. For example, a
Kylin extractor for a person’s birthdate is trained on
a set of pages which all have that person as their pri-
mary subject. Such extractors become inaccurate when
applied to a page which compares the lives of several
people — even if the person in question is one of those
mentioned.

While Kylin’s self-supervised approach allows it to learn
extractors for a comprehensive range of relations, using only
Wikipedia as a training source also limits its ability to extract
from the broader Web. In response, we developed two tech-
niques which dramatically improved its precision and recall
when extracting from the general Web.

3.1 Generalizing Extractors with Retraining
Our first idea is to harvest additional training data from the
outside Web for improved training, which we call retrain-
ing. The challenge is automatically identifying relevant sen-
tences given the sea of Web data. For this purpose, Kylin
utilizes TextRunner, an open IE system [1], which extracts
semantic relations {r|r = 〈obj1, predicate, obj2〉} from a
crawl of about 100 million Web pages. Importantly for our
purposes, TextRunner’s crawl includes the top ten pages re-
turned by Google when queried on the title of every Wikipedia
article.

For each target relation within an infobox, Kylin queries
to identify and verify relevant sentences that mention the at-
tribute’s value. Sentences passing the verification are labeled
as extra positive training examples. Kylin also identifies the
phrases (predicates) which are harbingers of each target rela-
tion. For example, "was married to" and "married" are iden-
tified for the "person.spouse" relation. These harbingers are
used to eliminate potential false negative training examples
generated from the Wikipedia data.

Figure 4: Using Kylin’s retrained extractors to extract
from the Web results in a substantial improvement to the
area under the P/R curve — even in infobox classes, like
writer, which have thousands of instances.

By adding new positive examples and excluding poten-
tial false negative sentences, retraining generates a cleaned
and augmented training dataset which improves Kylin’s per-
formance. When used together with shrinkage, the improve-
ment in recall is enormous. For example, on the performer
class, recall improved by 73% on Wikipedia data, and it dou-
bled on Web data. In other, more instance-sparse classes, the
improvement in recall was even higher, as much as 1755% [26].

3.2 Selecting Quality Sources
Our second method, targeted towards increasing precision,
is about deciding if an extraction from a Web page is indeed
relevant to the subject of a Wikipedia article. We view this
as an information-retrieval problem which we solve by care-
fully selecting and weighting extractions from Web pages.
This requires a number of steps: First, Kylin generates a set
of relevant queries and utilizes a general Web search engine,
namely Google, to identify a set of pages which are likely
to contain the desired information. These pages are fetched,
and Kylin’s extractors are applied to all content. Each ex-
traction is then weighted using a combination of factors, in-
cluding the rank of the page, the extraction confidence (score
computed by the CRF), and the distance between the current
sentence and the closest sentence containing the name of the
Wikipedia article.

Our experiments revealed that the CRF’s confidence is
a poor choice for scoring different extractions of the same
relations, but that the rank of the source page in response
to our queries, and especially the distance between the ex-
tracted text and the closest sentence containing the name of
the article are extremely useful. A weighted combination
performed best, and roughly doubled precision of Web ex-
tractions for a variety of classes [26].

Extraction results from the Web are later combined with
extraction results from Wikipedia. Higher weight is given
to extractions from Wikipedia, because it is still likely that
extractions from Wikipedia will be more precise. That is, in
Wikipedia we can be more certain that a given page is highly
relevant, is of higher quality, has a more consistent structure,
for which Kylin’s extractors have been particularly trained.

Integrating evidence from both Wikipedia and the greater
Web further helps Kylin’s performance. For example, on the



performer class, the area under the P/R curve improved
102%; for classes which are even more sparse, the improve-
ment can be ten times as high [26]. Recall can even be im-
proved on classes with many training instances; for exam-
ple, Figure 4 shows the improvement on the writer class
which has 2213 instances with infoboxes.

4. COMMUNAL CORRECTION
While some of the CRF extractors learned by Kylin have ex-
tremely high precision, in most cases precision is well below
that of humans. Thus, a fully automated process for pro-
ducing high-reliability, structured data (e.g., as would be re-
quired in order to to add extracted data back into Wikipedia
infoboxes) may be untenable. Instead, Kylin aims to am-
plify human effort towards this task. Figure 5 shows our first
mockup design of this interface. In a series of interviews
with members of the Wikipedia community, informal design
reviews, and a final online user study we refined, explored
and evaluated the space of interfaces, focusing on the design
dimensions listed below.

4.1 Key Issues for Correction Interfaces

Contribution as a Non-Primary Task: Although tools al-
ready exist to help expert Wikipedia editors quickly make
large numbers of edits [7], we instead want to enable contri-
butions by the long tail of users not yet contributing [24]. In
other words, we believe that pairing IE with communal con-
tent creation will be most effective if it encourages contribu-
tions by people who had not otherwise planned to contribute.
This means that we must treat contributing as a non-primary
task — encouraging contributions from people engaged in
some other primary activity.

Inviting Contributions: Any system based in community
content creation must provide an incentive for people to con-
tribute. Bryant et al. report that newcomers become mem-
bers of the Wikipedia community by participating in periph-
eral, yet productive, tasks that contribute to the overall goal
of the community [4]. Given this behavior, our goal is to
make the opportunity to contribute sufficiently salient that
people will try it, but not so visible as to make the interface
obtrusive or coercive. We designed three new interfaces to
explore this tradeoff.

Presenting Ambiguity Resolution in Context: As shown
in Figure 5 there are two plausible locations in an article
for presenting each potential extraction: near the article text
from which the value was extracted or proximal to the in-
fobox where the data is needed. Presenting information at
the latter location can be tricky because the contributor can-
not verify information without knowing the context. Fur-
thermore, varying the way that context is presented can dra-
matically affect user participation.

4.2 Preliminary User Study
We evaluated the effectiveness of our interfaces in stimu-
lating edits as well as users’ perception of interface intru-
siveness in a novel study, deployed via Google Adwords
and Yahoo Keyword Advertising [14]. While we developed

Could you please 
check this?

Do I have the 
correct birthday?

Yes No

Figure 5: User interface mockup. Casual users are pre-
sented with a standard Wikipedia page highlighting a
single attribute value; an ignorable popup window allows
the user to verify the extraction if she wishes.

some interface designs which yielded even higher participa-
tion rates, the “winner” of our study was an icon design that
was deemed relatively unobtrusive and yet which led people
to voluntarily contribute an average of one fact validation for
every 14 page visits. Validations had a precision of 90%. By
validating facts multiple times from different visitors, we be-
lieve we can achieve very high precision on extracted tuples.
Preliminary experiments also show that by adding these new
tuples as additional training examples, Kylin will keep in-
creasing extractor performance.

5. LESSONS LEARNED
Our experience in building the Kylin system and running it
over the constantly-changing Wikipedia yields several lessons.

5.1 Approaches to Open IE
In traditionally, relational databases, rigid schemata are

defined before any data is added; indeed, a well-defined schema
facilitates the expression of queries. But if one wishes to
extract a wide variety of information from the Web, for ex-
ample a large fraction of data from Wikipedia, then human
preengineering of such schemata (and associated construc-
tion of labeled training data for each relation) is impossible.

In response, we focus on what Etzioni et al. term open in-
formation extraction — algorithms which can handle an un-
bounded number of relations, eschew domain-specific train-
ing data, and scale linearly to handle Web-scale corpora. Be-
sides Kylin, only a few open IE systems have yet been built,
with the first being TextRunner [2, 1]. We believe that all
open IE systems may be placed into two groups, which we
term relational-targeting and structural-targeting methods.
Kylin uses a relational approach, but to our knowledge all
other open IE systems use structural targeting.

Relational Targeting: Learning a relation-specific extrac-
tor is the most common technique in traditional IE; indeed,
the example in the beginning of Section 2 trained an HMM
where one state corresponded to words naming an instance
of the company relation. The first challenge for this method
is acquiring enough training data for a comprehensive set of
relations. This paper has shown how Kylin’s self-supervised



approach uses Wikipedia infoboxes to heuristically assemble
training sets. We estimate that Wikipedia contains 5000 in-
fobox classes, each of which has approximately 10 attributes.
Thus, while Kylin can’t truly handle an unbounded number
of relations, it seems capable of learning 50,000, which may
be sufficient.

We contrast our approach with systems such as Yago [22],
which also use Wikipedia as a corpus, but learn a fixed set of
a dozen relations using substantial manual effort. While sys-
tems such as DBLIFE [8] scale relatively well, they aren’t
“open” either, requiring manually-crafted rules for extrac-
tion.

Structural Targeting: An alternative approach is to build
a general extraction-engine which looks for some form of
relation-independent structure on Web pages and uses this
to extract tuples. A postprocessing step is often used to nor-
malize the extractions, determining the precise relation and
entities which have been extracted. There are many different
forms of structure which may be used in this process. For
example, TextRunner [2, 1] and Knext [23] exploit gram-
matical structure over sentences. Hearst patterns operate on
phrases within sentences [13, 10]. Other work uses HTML
structure, such as the DOM tree, to extract lists and tables [9,
10, 12, 5]

While open IE systems using structural targeting can truly
handle an unbounded number of relations, such generality
often comes at the cost of lower precision when compared
to relationally-targeted extractors. This brings us back to
the challenge described in Section 1.2: can open IE meth-
ods really provide generality along with high precision and
recall. We think the answer is “yes.” Both structural and
self-supervised relational approaches have made impressive
progress. And importantly, the different approaches are com-
plementary, as we demonstrate with Kylin’s retraining method-
ology. Future work may focus on other ways to combine
these approaches.

5.2 Scalability of Relation-Specific Open IE
To scale extraction to a large number of relations from a

large number of pages, parallelization is important and al-
ready we see information extraction algorithms leveraging
map-reduce-style data processing frameworks [6]. Yet, par-
allelization alone is not sufficient. For example, Kylin learns
a relation-specific extractor for each attribute of each in-
fobox class in Wikipedia — potentially more than 50,000
extractors in total. It would be impractical to run every ex-
tractor on each Wikipedia page, let alone each page on the
Web! Fortunately, Kylin’s hierarchical approach for classi-
fying Wikipedia pages and sentences, alleviates the problem
when the extraction corpus is Wikipedia itself. However,
it’s unclear that this approach can be extended to the general
Web.

5.3 Integrating Evidence
High precision and recall requires collecting information

from many sources. In fact, leveraging the redundancy of
content on the Web, utilizing structural properties of Web
sites or their contents, and leveraging relevant databases [3]
is often crucial for resolving extraction ambiguities. One
method accomplishing this integration is joint inference [19,

25]. Additionally, the need to decompose extractors for rea-
sons of efficiency further increases the amount of evidence
being collected. The biggest challenge for this task is likely
managing the tradeoff between computational blowup (if ex-
act approaches are attempted) and greatly reduced accuracy
(if approximations such as probabilistic independence are
made).

Kylin learns a myriad of extractors independently, but what
we consider as one of its main contributions, is the realiza-
tion that a careful integration of extractors exploiting var-
ious structural properties of content and sites, can lead to
dramatic improvements in precision and recall. Kylin auto-
matically infers a taxonomy underlying Wikipedia data and
utilizes this taxonomy to help extraction, even though the
taxonomy itself is not its goal. When combined, techniques
such as shrinkage, retraining, and Web-source selection en-
able Kylin to perform well, even when targeting the long tail
of rarely occurring relations. We are also looking to improve
Kylin’s integration abilities through the use of probabilistic
CFGs. This may provide a cleaner way to integrate page and
sentence classification with extraction; this method also en-
ables joint inference. As always, scalability is likely to be
the defining challenge.

5.4 The Role of Humans
In the near future, we are unlikely to achieve extremely

high precision extraction without human involvement. Re-
searchers have explored four main ways for involving hu-
mans in the process: 1) humans write rule-based extrac-
tion procedures, 2) humans label training data for supervised
learning of extractors, 3) humans validate candiate extrac-
tions, regardless of how they are produced, and 4) humans
manually aggregate structured information (e.g., as in Free-
base). We believe, that in many cases, one can best utilize
the rare human resource by combining self-supervised learn-
ing with crowd-sourced validation. The study described in
Section 4.2 shows that high participation rates are possible.

6. CONCLUSION
By converting unstructured, natural-language text to rela-

tional form, information extraction enables many powerful
Data Management techniques. However, in order to scale IE
to the Web, we must focus on open IE — a paradigm that
tackles an unbounded number of relations, eschews domain-
specific training data, and scales computationally [2, 11].
This paper describes Kylin, which uses self-supervised learn-
ing to train relationally-targeted extractors from Wikipedia
infoboxes. We explained how shrinkage and retraining al-
low Kylin to improve extractor robustness, and we demon-
strate that these extractors can successfully mine tuples from
a broader set of Web pages. Finally, we argued that the best
way to utilize human efforts is by inviting humans to quickly
validate the correctness of machine-generated extractions.

We distill several lessons from our experience. Perhaps
our most important observation contrasts two approaches to
open IE: relational vs. structural targeting. While Kylin pri-
marily uses the relational approach, we argue that the best
chance for jointly optimizing extraction generality, preci-
sion, and recall will be to further combine relational and
structural approaches.



Acknowledgments: We thank Eytan Adar, Saleema Amer-
shi, Mike Cafarella, AnHai Doan, Oren Etzioni, Krzysztof
Gajos, James Fogarty, Chloé Kiddon, Shawn Ling, Kayur
Patel, and Stefan Schoenmackers for valuable discussions.
Evgeniy Gabrilovitch and Ken Schmidt greatly facilitated
our user study. This work was supported by NSF grant IIS-
0307906, ONR grant N00014-06-1-0147, SRI CALO grant
03-000225, the WRF / TJ Cable Professorship and a grant
from Yahoo! Inc.

7. REFERENCES
[1] M. Banko and O. Etzioni. The tradeoffs between

traditional and open relation extraction. Proceedings
of ACL08, 2008.

[2] Michele Banko, Michael J. Cafarella, Stephen
Soderland, Matt Broadhead, and Oren Etzioni. Open
information extraction from the Web. Proceedings of
IJCAI07, 2007.

[3] Kedar Bellare and Andrew McCallum. Learning
extractors from unlabeled text using relevant
databases. Proceedings of IIWeb08 Workshop, 2007.

[4] S. Bryant, A. Forte, and A. Bruckman. Becoming
Wikipedian: transformation of participation in a
collaborative online encyclopedia. Proceedings of
GROUP05, 2005.

[5] Michael J. Cafarella, Alon Halevy, Yang Zhang,
Daisy Zhe Wang, and Eugene Wu. Webtables:
Exploring the power of tables on the web. Proceedings
of VLDB08, 2008.

[6] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and
K Olukotun. Map-reduce for machine learning on
multicore. Proceedings of NIPS06, Vancouver,
Canada, 2006.

[7] D. Cosley, D. Frankowski, L. Terveen, and J. Riedl.
Suggestbot: Using intelligent task routing to help
people find work in wikipedia. Proceedings of IUI07,
January 2007.

[8] P. DeRose, X. Chai, B. Gao, W. Shen, A. Doan,
P. Bohannon, and J. Zhu. Building community
wikipedias: A human-machine approach. Proceedings
of ICDE08, 2008.

[9] R. Doorenbos, O. Etzioni, and D. Weld. A scalable
comparison-shopping agent for the World-Wide Web.
Proceedings of AGENTS97, pages 39–48, Marina del
Rey, California, 1997.

[10] O. Etzioni, M. Cafarella, D. Downey, S. Kok,
A. Popescu, T. Shaked, S. Soderland, D. Weld, and
A. Yates. Unsupervised named-entity extraction from
the Web: An experimental study. Artificial
Intelligence, 165(1):91–134, 2005.

[11] Oren Etzioni, Michele Banko, Stephen Soderland, and
Daniel S. Weld. Open information extraction from the
Web. Communications of the ACM, 51(12) 2008.

[12] Wolfgang Gatterbauer, Paul Bohunsky, Marcus
Herzog, Bernhard Krüpl, and Bernhard Pollak.
Towards domain-independent information extraction
from web tables. Proceedings of WWW07, 2007.

[13] M. Hearst. Automatic acquisition of hyponyms from
large text corpora. Proceedings of COLING92, 1992.

[14] R. Hoffmann, S. Amershi, K. Patel, F. Wu, J. Fogarty,
and D. S. Weld. Amplifying community content
creation with mixed-initiative information extraction.
Proceedings of CHI09, 2009.

[15] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting
and labeling sequence data. Proceedings of ICML01,
Edinburgh, Scotland, May 2001.

[16] Andrew K. McCallum, Ronald Rosenfeld, Tom M.
Mitchell, and Andrew Y. Ng. Improving text
classification by shrinkage in a hierarchy of classes.
Jude W. Shavlik, editor, Proceedings of ICML98,
pages 359–367, Madison, US, 1998. Morgan
Kaufmann Publishers, San Francisco, US.

[17] Kamal Nigam, John Lafferty, and Andrew McCallum.
Using maximum entropy for text classification.
Proceedings of the IJCAI99 Workshop on Machine
Learning for Information Filtering, 1999.

[18] S. Ponzetto and M. Strube. Deriving a large scale
taxonomy from Wikipedia. Proceedings of AAAI07,
pages 1440–1445, 2007.

[19] Hoifung Poon and Pedro Domingos. Joint inference in
information extraction. Proceedings of AAAI08, pages
913–918, 2007.

[20] M. Richardson and P. Domingos. Markov logic
networks. Machine Learning, 2006.

[21] Rion Snow, Daniel Jurafsky, and A. Ng. Semantic
taxonomy induction from heterogenous evidence.
Proceedings of ACL06, 2006.

[22] F. Suchanek, G. Kasneci, and G. Weikum. Yago: A
core of semantic knowledge - unifying WordNet and
Wikipedia. Proceedings of WWW07, 2007.

[23] B. Van Durme and L.K. Schubert. Open knowledge
extraction through compositional language processing.
Symposium on Semantics in Systems for Text
Processing, 2008.

[24] J. Voss. Measuring wikipedia. International
Conference of the International Society for
Scientometrics and Informetrics, 2005.

[25] Michael Wick, Khashayar Rohanimanesh, Karl
Schultz, and Andrew McCallum. A unified approach
for schema matching, coreference and
canonicalization. Proceedings of KDD08, 2008.

[26] Fei Wu, Raphael Hoffmann, and Danel S. Weld.
Information extraction from Wikipedia: Moving down
the long tail. Proceedings of KDD08, 2008.

[27] Fei Wu and Daniel Weld. Autonomouslly
semantifying Wikipedia. Proceedings of CIKM07,
Lisbon, Porgugal, 2007.

[28] Fei Wu and Daniel Weld. Automatically refining the
Wikipedia infobox ontology. Proceedings of WWW08,
2008.

[29] K. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted
metadata for image search and browsing. Proceedings
of SIGCHI03, 2003.


